نانوکامپوزیت‌های برپایۀ نشاستۀ ترموپلاستیک - نانوذرات نقره - نانورس: بررسی اثرات ضد باکتریایی روی اشرشیاکلی، ویژگی‌های مکانیکی و نفوذپذیری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 1دانش آموخته کارشناسی ارشد گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه تبریز

2 2استاد گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه تبریز

3 دانشجوی دکتری علوم و صنایع غذایی دانشگاه آزاد سبزوار

4 4 استاد گروه علوم و صنایع غذایی دانشگاه آزاد سبزوار

5 دانشجوی دکتری گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه تبریز

چکیده

بسته بندی­های برپایۀ پلیمرهای زیستیِ حاوی نانوذرات نقره، انواع جدیدی از بسته­بندی­های فعال هستند که علاوه بر برخورداری از ویژگی زیست تخریب پذیری، می­توانند موجب کاهش خطر ناشی از آلودگی­­های میکروبی در مواد غذایی تازه و فرایند شده گردند. در این پژوهش، برای بهبود ویژگی­های مکانیکی و نفوذپذیری فیلم­های پلیمری زیستی نشاستۀ ترموپلاستیک و تولید نانوکامپوزیت زیستی، از نانورس (مونت موریلونت) و برای تولید فیلم فعال و ایجاد ویژگی­های ضدمیکروبی علیه باکتری اشرشیاکلی، از نانوذرات نقره استفاده شد. مطابق نتایج آزمون ضد میکروبی، نانولایه­های رس نه تنها ویژگی­های ضد میکروبی نداشتند بلکه موجب کاهش خاصیت ضدمیکروبی در فیلم­های حاوی نانوذرات نقره گردیدند. افزودن هر دو نوع نانوذره و مخلوط آن­ها باعث بهبود ویژگی­های بازدارندگی فیلم­های نشاسته­ای در برابر آب شد؛ بطوری که حلالیت در آب و نفوذپذیری در فیلم­های نشاسته نرم شده - نانوذرات نقره – نانورس نسبت به نمونۀ شاهد، به ترتیب 93/30 و 43/75 درصد، کاهش پیدا کرد. نتایج حاصل از آزمون ویژگی­های مکانیکی نشان داد که در فیلم­های حاوی نانورس با افزایش غلظت نانوذرات نقره، استحکام کشش نهایی تا مقدار 38/5 مگاپاسکال افزایش و کرنش تا نقطۀ شکست تا مقدار 23/41 درصد کاهش پیدا کرد. با افزایش غلظت نانوذرات نقره در فیلم­های حاوی نانورس، درصد عبور پرتوهای نور UV به طور معنی داری کاهش یافت و مطابق نتایج رنگ سنجی، با افزودن نانونقره، کدورت و زردی فیلم­ها افزایش یافت.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Thermoplastic starch-nanosilver-nanoclay nanocomposites: investigation of anti-bacterial effect against Escherichia coli, mechanical and permeability properties

نویسندگان [English]

  • T ostad ali 1
  • B Ghanbarzadeh 2
  • F Darikvand 3
  • A Mortazavi 4
  • L abolgasemi 5
1 1
4 4
ابوالقاسمی فخری ل، قنبرزاده ب، دهقان­نیا ج، انتظامی ع الف، 1391، بررسی تاثیر نانورس (نانورس) بر ویژگیهای نفوذپذیری به بخار آب، زاویه تماس و خواص حرارتی فیلم نانوکامپوزیتی بر پایۀ کربوکسی متیل سلولز- پلی وینیل الکل، نشریه پژوهشهای علوم و صنایع غذایی ایران، جلد 8، 4، 409–399.
قنبرزاده ب، الماسی ه، زاهدی ی، 1388، بیوپلیمرهای زیست تخریب پذیر و خوراکی در بسته­بندی مواد غذایی و دارویی، انتشارات دانشگاه صنعتی امیر کبیر.
نوشیروانی ن، قنبرزاده ب، انتظامی ع الف، 1390، مقایسه خواص کششی، نفوذپذیری و رنگی زیست نانوکامپوزیت­های بر پایۀ نشاسته حاوی دو نوع پرکننده: سدیم نانورس و نانوبلور سلولز، مجله علوم و تکنولوژی پلیمر، 5، 402-391.
Almasi H, Ghanbarzadeh B and Entezami AA, 2010. Physicochemical properties of starch-CMC-nanoclay biodegradable films. International Journal of Biological Macromolecules 46: 1-5.
Abdollahi M, RezaeiM and Farzi G, 2012. A novel active bionanocomposite film incorporating rosemary essential oil and nanoclay into chitosan. Journal of Food Engineering 12: 1-26.
ASTM E96-95, 1995. Standard test methods for water vapor transmission of material. Annual book of ASTM, Philadelphia, PA: American Society for Testing and Materials.
ASTM D882-91, 1996.Standard test methods for tensile properties of thin plastic sheeting. Annual book of ASTM, Philadelphia, PA: American Society for Testing and Materials.
Fortunati E, Armentano I and Kenny JM, 2012. Multifunctional bionanocomposite films of poly (lactic acid), cellulose nanocrystals and silver nanoparticles. Carbohydrate Polymers 87: 1596-1605.
Gontard N and Guilbert S, 1994. Biopackaging: technology and properties of edible and/or biodegradable material of agricultural origin. In: Mathlouthi M, Food packaging and preservation. Blackie Academic and Professional, London.
Ghosh S, Kaushik R, Nagalakshmi K and Vasan HN, 2010. Antimicrobial activity of highly stable silver nanoparticles embedded in agar-agar matrix as a thin film. Carbohydrate Research 345: 2220-2227.
Guilbert S, 1986. Technology and application of edible protective films. Pp. 371-394. In: Mathlouthi M (eds). Food Packaging and Preservation. Elsevier Applied Science, London, UK.
Huang M and Yu J, 2006. Structure and properties of thermoplastic corn starch/clay nanocomposites. Journal of Applied Polymer Science 99: 170.
Kang S, MauterM and Elimelech M, 2009. Microbial cytotoxicity of carbon-based nanomaterials. Journal of Environmental Science and Technology 43: 2648-2653.
KesterJJand Fennema O, 1986. Edible films and coatings: A review. Food Technology 40: 47-59.
KonwarU, Karaka N and Mandal M, 2010. Vegetable oil based highly branched polyester/clay silver nanocomposites as antimicrobial surface coating materials. Progress in Organic Coatings 68: 265-273.
Li SH, Jia N, Ma M and Sun R, 2011. Cellulose-silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydrate Polymers 86: 441-447.
Mc Hugh TH and Krochta JM, 1994. Plasticized whey protein edible films: Water vapor permeability properties. Journal of food science 52: 416-419.
Okamoto M, 2005. Biodegradable polymer/layered silicate nanocomposites: A review. Pp. 1-45. In: Mallapragada S and Narasimhan B (eds). Handbook of biodegradable polymeric materials and their applications. American Science Publishers.
Oleyaei SA, Ghanbarzadeh B and Abbasi F, 2012. Preparation and comparison of physical properties of starch nanobiocomposites contain nanoclay and titanium dioxide nanoparticles. M.Sc. Thesis, Faculty of Agriculture, University of Tabriz.
Olivato JB, Grossmann MVE, Bilck AP, Yamashita F and Oliveira LM, 2013. Starch/polyester films: simultaneous optimisation of the properties for the production of biodegradable plastic bags. Polímeros 23(1): 32-36.
Panacek A, Kvitek L, Prucek R, Kolar M, Vecerova R, Pizurova N, Sharma VK, Nevecna T and Zboril R, 2006. Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. Journal of Physical Chemistry B 110: 16248-16253.
Park HM, Li X, Un CZ, Park CY, Cho WJ and Ha CS, 2002. Preparation and properties of biodegradable thermoplastic starch/clay hybrids. Macromolecule Material Engineerig 287: 553.
Park HM, Lee WK, Park CY, Cho WJ and Ha CS, 2003. Environmentally friendly polymer hybrids. 1. mechanical, thermal, and barrier Properties of thermoplastic starch/clay nanocomposites. Journal of Material Science 38: 909.
Sothornvit R, Rhim JW and Hong SI, 2009. Effect of nano-clay type on the physical and antimicrobial properties of whey protein isolate/clay composite films. Journal of Food Engineering 91: 468-473.
Shu-Ming L, Ning J, Ming-Guo M, Zhe Z, Qing-Hong L and Run-Cang S, 2011. Cellulose-silver nanocomposites: Microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydrate Polymers 86: 441- 447.
Wang B, Liu X, Ji Y and Ji J, 2012. Fast and long-acting antibacterial properties of chitosan-Ag/polyvinylpyrrolidone nanocomposite films. Carbohydrate Polymers 12: 1-29.
Wilhelm HM, Sierakowski MR, Souza GP and Wypych F, 2003. Starch films reinforced with mineral clay. Carbohydrate Polymers 52: 101.
Yu JG, Wang N and Ma XF, 2005. The effects of citric acid on the properties of thermoplastic starch plasticized by glycerol. Starch/Starke 57: 494−504.