تأثیرنوع مالتودکسترین برپایه معادل دکستروز و دمای هوای ورودی بر ویژگی‌های فیزیکی-شیمیایی پودر میوه زرشک تولید شده به روش خشک کردن پاششی

نویسندگان

گروه پژوهشی زیست فناوری مواد غذایی، مؤسسه پژوهشی علوم و صنایع غذایی، مشهد

چکیده

میوه زرشک سرشار از ترکیبات مغذی نظیر آنتوسیانین­ها و ترکیبات فنلی است و پودر حاصل از آن نیز می­تواند به عنوان منبع مهمی از این ترکیبات در نظر گرفته شود. خشک­کردن پاششی به شکل گسترده جهت تولید پودرهای نوشیدنی استفاده می­شود. نوع حامل و دمای ورودی خشک­کن پاششی از مهم­ترین عوامل مؤثر بر ویژگی­های پودر حاصله می­باشد. در این تحقیق خواص فیزیکی­شیمیایی پودر به دست آمده از آبمیوه زرشک (بریکس 12) همراه با 12 درصد (وزنی-حجمی) مالتودکسترین با معادل دکستروز 7-4 و 5/19-5/16، تحت تأثیر دو دمای هوای ورودی 130 و 150 درجه سانتی­گراد بررسی گردید. نتایج نشان داد در دمای 130 درجه سانتی­گراد با افزایش معادل دکستروز مقدار رطوبت کاهش و دانسیته توده و جذب رطوبت افزایش یافت (05/0>P). دمای انتقال شیشه­ای پودر تولید شده در دمای ورودی 130 درجه سانتی­گراد با افزایش معادل دکستروز بیشتر شد. تصاویر اسکن شده توسط میکروسکوپ الکترونی نشان دادند با افزایش معادل دکستروز تخلخل پودر به طور معنی­داری افزایش یافت (05/0>P). پراش اشعه ایکس حضور سطوح آمورف را در رابطه با پودرهای تولید شده تأیید کرد. استفاده از مالتودکسترین با معادل دکستروز بالاتر موجب کاهش آنتوسیانین کل شد. نتایج حاصل از ارزیابی رنگ مشخص کرد که با افزایش معادل دکستروز اندیس­a* کاهش یافت (05/0>P). به­طورکلی، پودر تولید شده با معادل دکستروز پایین تحت دمای ورودی130 درجه سانتی­گراد از ویژگی­های فیزیکی­شیمیایی مناسب­تری برخوردار بود.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of maltodextrin dextrose equivalent and inlet air temperature on physicochemical properties of barberry fruit powder produced by spray drying

نویسندگان [English]

  • N Nadali
  • A Pahlavanlou
  • M Sarabi
  • A Balandari
احمدی راد م. امام جمعه ز و اسدی حسن، 1395. بهینه سازی فرآیند خشک کردن پاششی آب زغال اخته با استفاده از روش سطح پاسخ، فصلنامه علوم و صنایع غذایی، 13، 78-67.
عزیز طائمه ح، کاظمی الف و رضوی ج، 1384. خشک کردن آب انار با روش پاششی، فصلنامه علوم و صنایع غذایی ایران، 2، 66-59.
کافی م و بالندری الف، 1381. زرشک: فناوری تولید و فرآوری، دانشگاه فردوسی مشهد، انتشارات زبان و ادب، مشهد.
محمدی م، مسکوکی ع، مرتضوی س، نهاردانی م، پورفلاح ز و صادقیان ع، 1392. پایداری حرارتی روغن سویا توسط آنتی اکسیدانهای طبیعی استخراج شده از میوه زرشک بی دانه به وسیله آب مادون بحرانی، مجله علوم تغذیه و صنایع غذایی ایران، 8، 124-113.
Aghbashlo M, Kianmehr MH and Samimi-Akhijahani H, 2008. Influence of drying conditions on the effective moisture diffusivity, energy of activation and energy consumption during the thin-layer drying of berberis fruit (Berberidaceae). Energy Conversion and Management 49: 2865–2871.
Association of Official Analytical Chemists, 2006. Official Methods of Analysis, 18th ed, AOAC, Gaithersburg, MD.
Bhusari SN, Muzaffar K and Kumar P, 2014. Effect of carrier agents on physical and microstructural properties of spray dried tamarind pulp powder. Powder Technology 266: 354–364.
Cano-Chauca M, Stringheta PC, Ramos AM and Cal-Vidal J, 2005. Effect of the carriers on the microstructure of mango powder obtained by spray drying and its functional characterization. Innovative Food Science & Emerging Technologies 6: 420-428.
Caparino OA, Tang J, Nindo, CI, Sablani SS, Powers JR and Fellman JK, 2012. Effect of drying methods on the physical properties and microstructures of mango (Philippine “Carabao” var.) powder. Journal of Food Engineering 111:135–148.
Emam jomeh Z, Seddighi-pashaki A and Askari GR, 2016. Influence of process condition on the functional properties of spray-dried seedless black barberry (Berberis Vulgaris) juice powder. Journal of Food Processing and Preservation 40: 1-11.
Fazaeli M, Emam-Djomeh Z, Ashtari AK and Omid M, 2012. Effect of spray drying conditions and feed composition on the physical properties of black mulberry juice powder. Food and Bioproducts Processing 90: 667-675.
Ferrari CC, Germer SPM and de-Aguirre JM, 2012. Effects of Spray-Drying Conditions on the Physicochemical Properties of Blackberry Powder. Drying Technology 30: 154–163.
Goula AM and Adamopoulos KG, 2008. Effect of Maltodextrin Addition during Spray Drying of Tomato Pulp in Dehumidified Air: II. Powder Properties. Drying Technology 26: 726–737.
Jiménez-Aguilar DM, Ortega-Regules AE, Lozada-Ramírez JD, Pérez-Pérez MCI, Vernon-Carter EJ and Welti-Chanes J, 2011. Color and chemical stability of spray-dried blueberry extract using mesquite gum as wall material. Journal of Food Composition and Analysis 24: 889-894.
Mestry AP, Mujumdar AS and Thorat BN, 2011. Optimization of Spray Drying of an Innovative Functional Food: Fermented Mixed Juice of Carrot and Watermelon. Drying Technology 29: 1121–1131.
Michalska A, Wojdylo A, Lech K, Lysiak G and Figiel A, 2016. Physicochemical properties of whole fruit plum powders obtained using different drying technologies. Food Chemistry 1-25.
Murugesan R and Orsat V, 2011. Spray drying of elderberry (Sambucus nigra L.) juice to maintain its phenolic content. Drying Technology 29: 1729-1740.
Nualkaekul S, Deepika G and Charalampopoulos D, 2012. Survival of freeze dried Lactobacillus plantarum in instant fruit powders and reconstituted fruit juices. Food Research International 48: 627–633.
Phisut N, 2012. Spray drying technique of fruit juice powder: some factors influencing the properties of product. International Food Research Journal 19: 1297-1306.
Quek SY, Chok NK and Swedlund P, 2007. The physicochemical properties of spray-dried watermelon powders. Chemical Engineering and Processing: Process Intensification 46: 386-392.
Saifullah M, Yusof WA, Chin NL and Aziz MG, 2016. Physicochemical and flow properties of fruit powder and their effect on the dissolution of fast dissolving fruit powder tablets. Powder Technology 1-33.
Samborska K, Gajek P and Kamińska-Dwórznicka A, 2015. Spray Drying of Honey: The Effect of Drying Agents on Powder Properties. Polish Journal of Food and Nutrition Sciences 65: 109–118.
Sharifi A, Niakousari M, Maskooki A and Mortazavi SA, 2015. Effect of spray drying conditions on the physicochemical properties of barberry (Berberis vulgaris) extract powder. International Food Research Journal 22: 2364-2370.
Shishir MRI and Chen W, 2017. Trends of spray drying: A critical review on drying of fruit and vegetable juices. Trends in Food Science & Technology 65: 49-67.
Tontul I and Topuz A, 2017. Spray-drying of fruit and vegetable juices: Effect of drying conditions on the product yield and physical properties. Trends in Food Science & Technology 63: 91-102.
Truong V, Bhandari BR and Howes T, 2005. Optimization of cocurrent spray drying process for sugar-rich foods. Part II—Optimization of spray drying process based on glass transition concept. Journal of Food Engineering 71: 66-72.
Walton DE, 2000. The morphology of spray-dried particles, a qualitative view. Drying Technology 18: 1943–1986.
Yousefi S, Emam-Djomeh Z and Mousavi SM, 2011. Effect of carrier type and spray drying on the physicochemical properties of powdered and reconstituted pomegranate juice (Punica Granatum L.). Journal of food science and technology 48: 677-684.
Zheng M, Jin Z and Zhang Y, 2007. Effect of cross-linking and esterification on hygroscopicity and surface activity of cassava maltodextrins. Food chemistry 103: 1375-1379.
Zotarelli MF, da Silva VM, Durigon A, Hubinger MD and Laurindo JB, 2017. Production of mango powder by spray drying and cast-tape drying. Powder Technology 305: 447-454.