بررسی ویژگی‌های فیزیکوشیمیایی و آنتی‌اکسیدانی نانوامولسیون حاوی اسانس‌های روغنی زیره‌سبز- لیموترش تولیدشده به روش تشکیل خودبه‌خودی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه تبریز-دانشکده کشاورزی- گروه صنایع غذایی

2 هیات علمی دانشگاه تبریز

3 دانشگاه تبریز گروه لوم و صنایع غذایی

4 دانشگاه تبریز

چکیده

درون‌پوشانی ترکیبات غذا-داروی آبگریز مانند انواع اسانس‌های روغنی در سیستم‌های نانوحامل موجب بهبود حلالیت و جذب آن‌ها در بدن انسان می‌گردد و می‌تواند روشی موثر در غنی‌سازی مواد غذایی باشد. در این مطالعه نانوامولسیون حاوی نسبت 1:1 اسانس‌های روغنی زیره‌سبز- لیموترش به روش تشکیل خودبه‌خودی با استفاده از سورفاکتانت غیریونی (تویین80) و انواع فاز روغنی حامل؛ میگلیول812، روغن کنجد و روغن ذرت ونسبت سورفاکتانت به امولسیون SER) 15%) تولید شد تا با توجه به نتایج اندازه، توزیع اندازه، پتانسل زتا و پایداری به بهترین فاز روغنی حامل در تولید فرمولاسیون نانوامولسیون اسانس‌های روغنی زیره سبز و لیموترش بتوان دست یافت. طبق نتایج به‌دست آمده نمونه‌ نانوامولسیون حاوی نسبت 1:1 اسانس‌های روغنی زیره‌سبز و لیموترش (SER=15%) با روغن حامل میگلیول 812 با کوچکترین اندازه قطرات (98/84 نانومتر)، شاخص پراکنش (232/0) و توزیع اندازه قطرات باریک و تک مد برای بررسی و اندازه‌گیری سایر آزمایشات انتخاب شد. اندازه قطرات نانوامولسیون در طی مدت زمان نگهداری شصت روزه و در دمای 25 درجه سانتی‌گراد پایدار بود. هم‌چنین تصاویر میکروسکوپ الکترونی عبوری، اندازه ذرات به‌دست آمده از دستگاه اندازه-گیری ذرات را تایید کرد. مقدار پتانسیل زتای فرمولاسیون بهینه در طی مدت نگهداری، خیلی جزئی و نزدیک صفر به‌دست آمد و افزایش زمان تأثیر معنی‌داری در تغییر پتانسیل زتای نمونه نشان نداد. نتایج بررسی مهارکنندگی رادیکال آزاد نشان داد نانوامولسیون انتخابی دارای خاصیت آنتی‌اکسیدانی بالایی در مقایسه با اسانس‌های روغنی به حالت آزاد ونمونه امولسیونی بدون اسانس روغنی بود. برطبق نتایج حاصل نانوامولسیون تولیدی با روغن حامل میگلیول 812 و نسبت 1:1 اسانسهای روغنی زیره سبز-لیموترش و SER=15% دارای شفافیت و پایداری فیزیکی بالایی بود و از آن میتوان به عنوان منبع آنتی‌اکسیدان از پلی‌فنول‌های طبیعی در غنی‌سازی انواع نوشیدنیها و مواد غذایی استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Study of physico-chemical and antioxidant properties of nanoemulsions containing cumin-lemon essential oils produced by spontaneous formation method

نویسندگان [English]

  • homa Alizadeh 1
  • akram pezeshky 2
  • babak ghanbarzade 3
  • shiva ghiasifar 4
1 university of tabriz
2
3 university of tabriz
4 university of tabriz
چکیده [English]

NEs are among the most important nano carrier systems, which are clear systems with droplet size within the range of 20-200 nm (Pezeshki et al., 2015 ).The particles smaller than the wavelength of the light are more resistant to the gravitational separation and therefore droplet aggregation compared with conventional emulsions (Pezeshki et al., 2017; Fathi et al., 2012). Also, as a promising drug delivery system they have been attracting global attention providing controlled release of active compounds (Ali et al., 2017). They are good delivery systems for lipid-soluble nutraceuticals which can be prepared by simple production methods and natural food ingredients (Hasani et al., 2015; Ozturk et al., 2015) Extensive researches have been done to use NEs for food enrichment and development of the functional foods containing bioactive components (Saberi et al., 2013, Ozturk et al., 2015, Komaiko and McClements, 2014). Formation and expansion of interfacial surface between the oil phase and the aqueous phase, requires energy input to the system and therefore these systems are thermodynamically unstable and due to various physicochemical phenomena over time they tend to separate to their constituent phases (Fathi et al., 2012; Rao & McClements, 2012; Jafari et al., 2008). This required energy could be provided by mechanical energy (high energy methods) or potential energy of its constituent components (low energy methods). Low energy methods are generally dependent to the interfacial phenomena at the boundary layer between oil and water phases and often it is more effective in small particle production compared with high energy methods ( Sagalowicz & Leser, 2008; Rao & McClements, 2012; Piorkowski & McClements, 2014). Spontaneous emulsification, one of the low energy methods in the preparation of oil in water NEs, depends on the production of very fine oil particles when an oil/hydrophilic surfactant mixture is added to the water (Pezeshki et al., 2017; Famian & Pezeshki, 2018). It is used as delivery system to encapsulate lipophilic nutraceutical components such as fat soluble vitamins Today, due to the reduction of fat in the diet and the loss of many compounds during various processes, the body is deficient in nutrients. Intrusion of hydrophobic food-drug compounds, such as various essential oils, into a variety of nanosatellite systems improves solubility and uptake into the human body and can be an effective way to enrich low-fat products. In this study, nanoamulsion containing 1: 1 ratio of subcutaneous, green-lemon oil essential oils by spontaneous formation method using spontaneous surfactant, non-hydrogen peroxide (Twin 80) and various oil phase carriers of Migliol 812, sesame oil and corn oil to surfactant ratio 15% emulsion (SER) was produced to achieve the best oil phase in the production of the optimal formulation of this nanomaterial with the smallest particle size.
NE was produced using low energy spontaneous method by addition of the oil phase drops (solution of a hydrophilic nonionic surfactant (Tween 80) to the deionized water (Pezeshki et al., 2017). The ratio of surfactant to emulsion (SER) and surfactant to oil phase (SOR) was 15% and 150%, respectively. During the formation of the emulsion the mixture is continuously stirred by the magnetic stirrer (500 rpm at 25° C). By the time when the pouring of the oil phase was completed, the systems were given stirred for 40 minutes to reach equilibrium. With regard to the effect of temperature on the particle size of nanoemulsion, a magnetic stirrer equipped with a temperature sensor (Hiedolph, Germany) was used to maintain temperature during emulsion formation.
Particle size and zeta potential measurements
The particle size and particle size distribution of system was obtained with use of a particle size analyzer (Malvern, UK) at 25°C. Measurements were performed by laser light scattering. The samples were diluted twenty times before being placed in the device and the average particle size was expressed based on volume diameter (Hamishehkar et al., 2009)
Transition electron microscopy (TEM)
The morphology of the NEs was observed using TEM (KYKY-EM3200 with an accelerating voltage of 26 kV). The drying process of the samples was conducted at room temperature on the carbon-coated grids (Klang et al., 2012).
Physical Stability
The NE formulation’s variations regarding particle size and span value as well as its physical appearance during the sixty-day storage at 25°C (on days 1, 7, 14, 30, 45 and 60th day) were studied.
Turbidity Measurements
A turbidity method was applied to specify the optical properties of the colloidal dispersions. First, with use of acidic buffer solution (pH 3.0) samples were diluted to oil concentrations ranging from 0.03 to 0.15 wt. %. The turbidity of selected samples was measured at 600 nm with use of a UV–visible spectrophotometer. The slope of a linear plot of turbidity versus oil phase concentration represents the turbidity increment (Saberi et al., 2013).

According to the results, the smallest droplet size of nanoamulsion produced with Miguel 812 (84.98 nm) carrier oil, especially dispersion (0.232), was distributed in the size of narrow and single-mode droplets. The temperature of 25 ℃ was stable. Images of the transmitting electron microscope also confirmed the particle size obtained from the particle measuring device. Transverse electron microscope images also confirmed the particle size obtained from the particle measuring device. The potential value of the optimal formulation zeta was obtained during a very small and near-zero maintenance period, and the increase in time did not show a significant effect on the change in the potential of the sample zeta. In general, using the Miguel oil phase, it is possible to produce nanomaterials containing all kinds of oily essential oils with the smallest size of droplets and stable, and then use it to enrich foods with a variety of oily essential oils.

کلیدواژه‌ها [English]

  • essential oil
  • cumin
  • sour lemon
  • Migliol
  • Twin 80
  • Nanomulsion
پزشکى الف، قنبرزاده هوجقان ب، همیشه­کار ح، مقدم واحد م، فتح الهى ع، 1394. تهیه نانوامولسیونهاى حامل ویتامین آپالمیتات به روش خودبه خودى: بررسی تاثیر سورفاکتانت و فاز روغنی بر اندازه قطرات و پایداری، پژوهش و نوآورى در علوم و صنایع غذایى، (4) 4، 299-314.
 حسن فامیان ف و پزشکی نجفآبادی الف، 1396. تولید نانوامولسیون حاوی لینولئیک اسید کونژوگه  (CLA) به روش تشکیل خود به خودی وغنی­سازی شیر کم­چرب پاستوریزه با آن، نشریه پژوهشهای صنایع غذایی ،(4)،145-135
مرندی الف، محمدی م، فتح الهی ع و پزشکی نجفآبادی الف، 1397. تولید نانولیپوزوم حاوی لینولئیک اسید کونژوگه (CLA) وغنی­سازی شیر کمچرب پاستوریزه با آن، نشریه پژوهشهای صنایع غذایی، (4) 167-157
Akbas E, Soyler B and Oztop MH, 2018. Formation of capsaicin loaded nanoemulsions with high pressure homogenization and ultrasonication. LWT, 96: 266-273.
Bok SH, Lee SH, Park YB, Bae, KH, Son KH, Jeong TS and Choi MS, 1999. Plasma and hepatic cholesterol and hepatic activities of 3-hydroxy-3-methyl-glutaryl-CoA reductase and acyl CoA: cholesterol transferase are lower in rats fed citrus peel extract or a mixture of citrus bioflavonoids. The Journal of nutrition, 129 (6): 1182-1185.
Chanda H, Das P, Chakraborty R and Ghosh A, 2011. Development and evaluation of liposomes of fluconazole. Journal of Pharmaceutical and Biomedical Sciences, 5 (27): p.1-9.
Davidov-Pardo G and McClements DJ, 2014. Resveratrol encapsulation: designing delivery systems to overcome solubility, stability and bioavailability issues. Trends in food science & technology 38(2): 88-103.
Dong X, Hu Y, Li Y and Zhou Z, 2019. The maturity degree, phenolic compounds and antioxidant activity of Eureka lemon [Citrus limon (L.) Burm. f.]: A negative correlation between total phenolic content, antioxidant capacity and soluble solid content. Scientia horticulturae, 243: 281-289.
Fathi M, Mozafari MR, Mohebbi M, 2012. Nanoencapsulation of food ingredients using lipid based delivery systems. Trends in food science & technology, 23(1): 13-27.
Fatouros DG and Antimisiaris SG, 2002. Effect of amphiphilic drugs on the stability and zeta-potential of their liposome formulations: a study with prednisolone, diazepam, and griseofulvin." Journal of colloid and interface science 251(2): 271-277.
Gonnet M, Lethuaut L and Boury F, 2010. New trends in encapsulation of liposoluble vitamins. Journal of Controlled Release, 146 (3): 276-290.
Gulotta A, Saberi AH, Nicoli MC and McClements DJ, 2014. Nanoemulsion-based delivery systems for polyunsaturated (ω-3) oils: Formation using a spontaneous emulsification method. Journal of agricultural and food chemistry, 62 (7), 1720-1725.
Hasani, F and Pezeshki A, Hamishehkar H, 2015. Effect of surfactant and oil type on size droplets of betacarotene-bearing nanoemulsions. International Journal of Current Microbiology and Applied Science, 4 (9): 146-155.
Jafari SM, Assadpoor E, He Y, Bhandari B, 2008. Re-coalescence of emulsion droplets during high-energy emulsification. Food hydrocolloids 22(7): 1191-1202.
Jiang Y, Fan Y, Zhang Y and Zhao L, 2016.Characterization of catechin-α-lactalbumin conjugates and the improvement in β-carotene retention in an oil-in-water nanoemulsion. Food Chemistry, 205: 73-80.
Keller, BC,2001. Liposomes in nutrition. Trends in food science & technology 12(1): 25-31.
Klang V, Matsko NB, Valenta C, Hofer F, 2012. Electron microscopy of nanoemulsions: An essential tool for characterisation and stability assessment. Micron 43(2): 85-103.
Lee S and McClements DJ, 2010. Fabrication of protein-stabilized nanoemulsions using a combined homogenization and amphiphilic solvent dissolution /evaporation Approach. Food Hydrocolloids, 24: 560-569.
Polychniatou V and Tzia C, 2018. Evaluation of surface-active and antioxidant effect of olive oil endogenous compounds on the stabilization of water-in-olive-oil nanoemulsions. Food Chemistry, 240: 1146-1153.
Radbeh Z, Asefi N, Hamishehkar H, Roufegarinejad L, Pezeshki A, 2020. Novel carriers ensuring enhanced anti-cancer activity of Cornus mas (cornelian cherry) bioactive compounds. Biomedicine & Pharmacotherrapy,125, 109906.
Rao J and McClements DJ, 2011. Food-grade microemulsions, nanoemulsions and emulsions: Fabrication from sucrose monopalmitate & lemon oil. Food hydrocolloids, 25 (6): 1413-1423.
Rostami H, Nikoo AM, RajabzadehG, Niknia, N. and SalehiS, 2018. Development of cumin essential oil nanoemulsions and its emulsion filled hydrogels. Food bioscience, 26: 126-132.
 Saberi AH, 2013. Fabrication of vitamin E-enriched nanoemulsions: Factors affecting particle size using spontaneous emulsification. Journal of colloid and interface science, 391: 95-102.
Saberi AH, Fang Y and McClements, DJ, 2013. Effect of glycerol on formation, stability, and properties of vitamin-E enriched nanoemulsions produced using spontaneous emulsification. Journal of colloid and interface science, 411: 105-113.
Silva HD, Cerqueira, MÂ and Vicente AA, 2012. Nanoemulsions for food applications: Development and characterization. Food and Bioprocess Technology, 5 (3): 854-867.
Talebi, Ghanbarzadeh B, Hamishehkar H, Pezeshki A, Ostadrahimi A, 2021. Effects of different stabilizers on colloidal properties and encapsulation efficiency of vitamin D3 loaded nano-niosomes. Journal of Drug Delivery Science and Technology, 61. 101284.