تأثیر محلول اکسید روی بر کیفیت و عمر نگهداری میوه توت‌فرنگی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش تحقیقات مهندسی صنایع غذایی و فناوری‌های پس از برداشت، مؤسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی،

2 بخش تحقیقات مهندسی صنایع غذایی و فناوری‌های پس از برداشت، مؤسسه تحقیقات فنی و مهندسی کشاورزی، سازمان تحقیقات، آموزش و ترویج کشاورزی، کرج، ایران

3 شرکت ایمن نوین پوشان پاک

چکیده

زمینه مطالعاتی: توت‌فرنگی از میوه‌های فسادپذیر است که به پوسیدگی‌های قارچی حساس بوده و دارای عمر پس از برداشت کوتاهی است. اکسید روی به‌عنوان ترکیبی ایمن با خاصیت ضد میکروبی می‌تواند در افزایش زمان ماندگاری توت‌فرنگی مؤثر باشد. هدف: در این پژوهش، تأثیر محلول اکسید روی ( با نام تجاری ایمن‌ژاو) بر ماندگاری، ویژگی-های فیزیکوشیمیایی و حسی میوه توت‌فرنگی رقم کاماروسا بررسی شد. روش کار: میوه‌های توت‌فرنگی در محلول اکسید روی با غلظت‌های مختلف (31/0 درصد، 63/0 درصد، 94/0 درصد و 25/1 درصد) برای زمان‌های 1، 2 و 3 دقیقه غوطه‌ور شدند. سپس میوه‌ها در ظروف پلاستیکی، بسته‌بندی و در شرایط معمولی (دمای 25 درجه سانتی‌گراد) و سردخانه (دمای 4 درجه سانتی‌گراد و رطوبت نسبی 90-85 درصد) نگهداری شدند. داده‌ها با آزمایش فاکتوریل در قالب طرح کاملاً تصادفی مورد تجزیه و تحلیل قرار گرفتند. نتایج: محلول اکسید روی در غلظت 31/0 درصد و غوطه-وری برای مدت 3 دقیقه سبب حفظ کیفیت و افزایش زمان ماندگاری میوه‌های توت‌فرنگی تا 2 هفته در سردخانه شد. در شرایط معمولی نگهداری نیز استفاده از محلول اکسید روی در غلظت 63/0 درصد و زمان غوطه‌وری 3 دقیقه سبب افزایش زمان نگهداری میوه‌های توت‌فرنگی به 48 ساعت شد. در این شرایط، میزان پوسیدگی میوه‌های توت‌فرنگی در مقایسه با شاهد تا 70 درصد کاهش یافت. اثر محلول ایمن‌ژاو روی ویژگی‌های حسی محصول قابل تشخیص نبود و تفاوت معنی‌داری بین تیمارها مشاهده نشد. نتیجه‌گیری نهایی: محلول اکسید روی در غلظت‌های پیشنهادی و نگهداری در سردخانه، در حفظ کیفیت و کاهش پوسیدگی در میوه توت‌فرنگی مؤثر بود.

کلیدواژه‌ها


عنوان مقاله [English]

The effect of zinc oxide solution on quality and storage life of strawberry

نویسندگان [English]

  • Abolfazl Golshan Tafti 1
  • Adel Mirmajidi Hashtjin 2
  • SM Sajed 3
1 Food and Postharvest Technology Division, Agricultural Engineering Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran.
2 Food and Postharvest Technology Division, Agricultural Engineering Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
3
چکیده [English]

Introduction: Strawberry (Fragaria x ananassa) as one of the most widely consumed fruits in the world is produced in 73 countries worldwide (Muzzaffar et al., 2016). Strawberry is mainly grown in Kordestan, Golestan, Mazandaran and Gilan provinces of Iran with Kordestan, Paros, Queen Eliza, Selva, Camarosa and Pajero as the most important cultivars. Since strawberry is very perishable fruit, requires careful harvesting and handling to maintain its quality after harvesting. Considering its sensitivity to physical injuries and fungal invasion besides rapid softening and susceptibility to rots, strawberry fruit has a short postharvest life. Gray mold, caused by Botrytis cinerea is considered as the most important strawberry disease with many negative impacts on ripening, marketing and postharvest life of the fruit (Abd-Alla et al., 2011). No strawberry cultivar is resistant to gray mold. The pathogen is able to infect stored strawberries because mycelia spread from infected fruit to adjacent healthy fruit. Several technologies have been used to reduce postharvest losses and extend the storage life of strawberries. These technologies include chemical control, low temperature storage, control atmosphere packaging, essential oils and irradiation (Marjanlo et al., 2009; Maraei and Elsawy 2017). Most of these techniques could be effective for shelf life extension of strawberry fruit. However, many reports documented harmful effects of chemical fungicides on human health and environment besides causing fungi resistance. Some compounds and methods may also have adverse effect on color, flavor or texture of the fruit. Thus, in the past few decades, research has focused on the use of safe and natural preservatives. It was reported that the storage life of strawberry fruit increased by application of cumin essential oil (Marjanlo et al., 2009). Among the various alternatives, metal oxides such as magnesium oxide and zinc oxide are catching the attention of scientists worldwide. These oxides render antimicrobial activity with higher stability in comparison to organic antimicrobials. Zinc oxide nanoparticles are less toxic than other nanoparticles such as silver nanoparticles. In addition, they are safer for human beings in comparison to other metal oxides (Al-Naamani et al., 2018). Al-Naamani et al. (2018) proved the efficiency of chitosan-znic oxide nanocomposite coatings in extending the shelf life of the packed okra. The application of nanocomposite film containing 2% zinc oxide nanoparticles maintained the qualitative characteristics of Mazafati date during cold storage (Sadeghipour et al., 2019). The aim of this study was to investigate the effect of different concentrations of zinc oxide solution on quality and shelf life of strawberry fruits (camarosa cultivar) during ambient and cold storage.
Material and methods: Zinc oxide solution with brand name Eimen Jav was purchased from Eimen Novin Pushan Pak Company. “Camarosa” strawberries at commercial maturity stage were harvested from a greenhouse located in Hashtgerd, Alborz province, Iran and then transported to Agricultural Engineering Research Institute. Fruits of uniform size without any defect were selected and used for the experiments. Strawberries were dipped in the solution at different concentrations (0.31%, 0.63%, 0.94%, 1.25%) for 1, 2 and 3 minutes. Then, the fruits were air dried at room temperature, put in plastic fruit boxes and stored at ambient temperature (25 oC, 30% RH) for 6 days and cold room (4 oC, 85-90% RH) for 21 days. The sampling was done on day 0, 2, 4, and 6 through ambient temperature and on day 0, 7, 14, and 21 through cold storage. Decay percent was calculated by visual observation of each sample. Fruits with visible brown spot and softened area were regarded as decayed fruit. Texture evaluation was performed by a texturometer. Firmness values of each individual strawberry were measured at two points of the equatorial regions using a 5 mm diameter probe and 500 load cell, at 2 mm/sec-1. Total soluble solids content was measured using a refractometer, Titratable acidity (TA) was calculated by titrating of clear juice of strawberry against 0.1 N NaOH solution and the results were expressed as citric acid %. Ascorbic acid content was determined by using 2,6-dichlorophenol indophenols titration method. A five-point hedonic scale was used for conducting the sensory evaluation of the samples. A panel of 15 judges was selected to evaluate the treatments for various sensorial parameters like appearance, texture, taste, and overall acceptability. Plain water was given to the judges to rinse their mouth between the evaluations of samples. The study was conducted as a factorial experiment in randomized complete design. All determinations were carried out in triplicates and the means were separated by Duncan Multiple Range test. All statistical tests were done by SPSS ver. 22 and were meaningful at 5%.

Results and discussion: Ascorbic acid content was significantly affected by zinc oxide solution at different concentrations and immersion times. The ascorbic acid value of the control was significantly lower than the treated fruits. Ascorbic acid content decreased through the storage time as observed in all treatments and the control. Zinc oxide treated strawberries at 0.31% concentration for 3 minutes had higher firmness values and better qualitative characteristic with increased shelf life up to 2 weeks during cold storage. Additionally, this treatment reduced fungal decay up to 50% compared to the control during cold storage. Zinc oxide solution at 0.63% concentration for 3 minutes increased the shelf life of strawberry fruits up to 48 hours under ambient temperature. In this condition, fungal decay reduced up to 70% as compared to the control. Zinc oxide solution had no effect on sensory attributes of the fruits.
Conclusions: This study showed that strawberry fruits treated with zinc oxide solution (Eimen Jav solution) at recommended concentration and under storage in cold room had better quality and less decay than the control. The results introduce zinc oxide solution as a useful method for maintaining strawberry quality and extending its storage life.

کلیدواژه‌ها [English]

  • Camarosa cultivar
  • Rot
  • Strawberry
  • Zinc oxide
احمدی جوزانی م، جوانمرد داخلی م و عراقی م، 1394. ارزیابی اثر عصاره دارچین در بسته­بندی فعال برای بهبود ماندگاری توت فرنگی، فصلنامه علمی ترویجی علوم و فنون بسته­بندی، 6، 60-52.
اصغری مرجانلو ا، مستوفی ی، شعیبی ش و  مقومی م، 1387. تأثیر اسانس ریحان بر کنترل پوسیدگی خاکستری و کیفیت پس از برداشت توت فرنگی (سلوا)، فصلنامه گیاهان دارویی، 8، 139-131.
امامی­فر آ، 1397. ارزیابی تأثیر پوشش خوراکی نانوذرات اکسید روی بر ویژگی­های میکروبی، فیزیکوشیمیایی و حسی انگور سیاه
         طی انبارداری، فصلنامه فناوری­های نوین غذایی، 4، 680-663.
جنتی م، عبدوسی و و مشهدی اکبر بوجار م، 1393.  اثر کاربرد کلرید کلسیم و اسانس آویشن بر برخی صفات پس از برداشت میوه توت فرنگی، فصلنامه دانش نوین کشاورزی پایدار، 2، 32-25.
حسینی س م، رضایی ف و درویش­نیا م، 1391. بررسی اثرات ضد قارچی اسانس گیاهان رازیانه و زیره سبز در  کنترل قارچ عامل بیماری پوسیدگی پس از برداشت میوه توت فرنگی، اولین همایش ملی فیزیولوژی پس از برداشت. دانشگاه شیراز، شیراز. ایران.  
دودمان م و امیری م ا، 1392. اثر Mg ، K وN بر عملکرد و کیفیت میوه توت­فرنگی(Fragaria×ananasa cv. Sun Rise)  در شرایط کشت هیدروپونیک، علوم و فنون کشت­های گلخانه­ای، 4، 118-111.
رضوی ف و خلقتی بنا ف، 1396. مدیریت کشت و پرورش توت­فرنگی در مزرعه و گلخانه. مدیریت هماهنگی ترویج کشاورزی، اداره رسانه­های آموزشی، سازمان جهاد کشاورزی استان چهارمحال و بختیاری.
صادقی­پور س، اخوان ح ر، شاکر اردکانی ا و حسینی ف، 1398. تأثیر بسته­بندی پلی­اتیلنی حاوی نانوذرات اکسید روی بر
         ماندگاری خرمای مضافتی، علوم و صنایع غذایی، 87، 152-141.
 محمدی ا، اخلاقی فیض آباد س ه و پدرام­نیا ا، 1397. بررسی اثر بازدارندگی اسانس برگ رزماری بر قارچ بوتریتیس سینرا برای افزایش ماندگاری میوه توت­فرنگی، نشریه نوآوری در علوم و فناوری غذایی، 10، 10-1.  
مدرس ب، رامین ع ا و قبادی س، 1393. اثر1- متیل سیکلوپروپن برعمر انبارمانی و قفسه­ای میوه توت­فرنگی رقم "کاماروسا"،  مجله تولید و فرآوری محصولات زراعی و باغی، 4، 267-253.
میغانی ح، برومند ن و مقبلی ا، 1397. اثر کیتوزان و کلرید کلسیم بر حفظ کیفیت پس از برداشت و ترکیب­های پاداکسنده میوه    توت­فرنگی، علوم و صنایع غذایی، 76، 317-307.
وحدت ش، قاسم­نژاد م، فتوحی قزوینی ر، شیری م ع و خداپرست س ع ا، 1391. اثر غلظت­های مختلف ژل آلوئه­ورا بر حفظ کیفیت پس از برداشت میوه توت­فرنگی، نشریه پژوهش­های صنایع غذایی، 22، 285-271.
Abd-Alla MA, Abd- El- Kader MM, Abd-El-Kareem F and El-Mohamedy RSR, 2011.  Evaluation of lemongrass, thyme and peracetic acid against gray mold of strawberry fruits. Journal of Agricultural Technology 7: 1775-1787.
Al-Naamani L, Dutta J and Dobretsov S, 2018. Nanocomposite zinc oxide-chitosan coatings on polyethylene films for extending storage life of Okra (Abelmoschus esculentus). Nanomaterials 479: 1-14.
Asghari Marjanlo A, Mostofi Y, Shoeibi SH and Fattahi M, 2009. Effect of cumin essential oil on postharvest decay and some quality factors of strawberry. Journal of Medicinal Plants 8: 25-43.
Chaudhry Q, Scotter M, Blackburn J, Ross B, Boxall A, Castle L, Aitken R and Watkins R, 2008. Applications and implications of nanotechnologies for the food sector. Food Additives and Contaminants 25: 241–258.
Espitia PJP, Soares NDFF, Dos Reis Coimbra JS, De Andrade NJ, Cruz RS and Medeiros EAA, 2012. Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technology 5: 1447–1464.
Hernandez-Munoz P, Almenar E, Jose-Ocio M and Gavara R, 2006. Effect of calcium dips and chitosan coatings on postharvest life of strawberries (Fragaria xananassa). Postharvest Biology and Technology 39: 247–253.
Kalt W, Forney CF, Martin A and Prior RL, 1999. Antioxidant capacity, vitamin C, phenolics and anthocyanins after fresh storage of small fruits. Journal of Agricultural and Food Chemistry 47: 4638-4644.
Maraei RW and Elsawy KM, 2017. Chemical quality and nutrient composition of strawberry fruits treated by g-irradiation. Journal of Radiation Research and Applied Sciences 10: 80-87.
Muzzaffar S, Jan R, Wani IA, Masoodi FA, Bhat MM, Wani TA and Wani GR, 2016. Effect of preservation methods and storage period on the chemical composition and sensory properties of strawberry crush. Cogent Food & Agriculture 2: 1-11.
Niakan M, Pouladi I, Kaviani R and Esmaili E, 2019. Antimicrobial effect of zinc oxide and silver nitrate nanoparticles against S. aureus, A. baumannii and P. aeruginosa. Journal of Basic and Clinical Pathophysiology 7: 27-30.
Pelayo C, Ebeler SE and Kader AA, 2003. Postharvest life and flavor quality of three strawberry cultivars kept at 5oC in air or air + 20kPa CO2. Postharvest Biology and Technology 27: 171-183.
Pichia D, 2006. Guide to post harvest care of strawberries in Moldova. United States Agency International Development, Pp. 1-23.
Wang SY and Gao H, 2013. Effect of chitosan-based edible coating on antioxidants, antioxidant enzymesystem, and postharvest fruit quality of strawberries (Fragaria x aranassa Duch.). LWT – Food Science and Technology 52: 71-79.
Zhang ZY and Xiong HM, 2015. Photoluminescent ZnO nanoparticles and their biological applications. Materials 8: 3101–3127.
Zheng Y, Wang SY, Wang CY and Zheng W, 2007. Changes in strawberry phenolics, anthocyanins, andantioxidant capacity in response to high oxygen treatments. LWT-Food Science and Technology 40:49–57.