مطالعه تأثیر نانورس و اسید سیتریک بر روی خواص فیزیکی و آنتی اکسیدانی فیلم فعال نشاسته – CMC حاوی عصاره آویشن

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی، واحد تبریز، گروه علوم و صنایع غذایی، تبریز

2 گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه ارومیه

چکیده

در این پژوهش فیلم فعال نشاسته–کربوکسی متیل سلولز (نسبت 2:1) حاوی عصاره آویشن (5% وزنی) تولید شد که در آن به منظور تقویت خواص بیوپلیمر مرکب، از نانورس در غلظت‌های 1، 3 و 5% به عنوان نانوتقویت کننده و اسید سیتریک در غلظت‌های صفر، 5 و 10% به عنوان عامل اتصال دهندۀ عرضی استفاده شده است. بررسی خواص مکانیکی و بازدارندگی در برابر بخار آب نشان داد که افزودن عصاره آویشن، باعث تضعیف مقاومت به کشش شده و همچنین نفوذپذیری به بخار آب و جذب رطوبت بیشتر می‌شود. با افزودن نانورس، ویژگی‌های بازدارندگی و استحکام کششی تقویت شد. اسید سیتریک نیز اثر مطلوبی بر روی خواص مکانیکی و بازدارندگی داشت. در بین افزودنی‌های مختلف، عصاره آویشن و نانورس بیشترین تأثیر را بر روی خواص رنگی داشته و باعث کاهش روشنایی و افزایش اندیس زردی شدند. مطابق نتایج آزمون گرماسنجی روبشی تفاضلی (DSC)، فیلم فعال حاوی 5% نانورس و 10% اسید سیتریک بالاترین دمای ذوب را نشان داد (C°7/229).  همچنین در حضور اسید سیتریک و نانورس، بدلیل کاهش ضریب انتشار عصاره، قدرت آنتی اکسیدانی فیلم فعال کاهش یافت. بررسی‌ها نشان داد که بین نانورس و اسیدسیتریک، اثر سینرژیستی در بهبود خواص فیلم وجود دارد و حضور آن دو تأثیر منفی عصاره آویشن بر روی خواص کاربردی فیلم فعال نشاسته-CMC را کاهش می‌دهد.  

کلیدواژه‌ها


عنوان مقاله [English]

Studying of the effect of nanoclay and citric acid on the physical and antioxidant properties of Thyme extract loaded starch-CMC active film

نویسندگان [English]

  • S R 1
  • h E 2
1
2
Abdollahi M, Alboofetileh M, Rezaei M and Behrooz R, 2013. Comparing physico-mechanical and thermal properties of alginate nanocomposite films reinforced with organic and/or inorganic nanofillers. Food Hydrocolloids 32: 416-424.
Almasi H, Ghanbarzadeh B, Dehghannya, J, Entezami AA and Khosrowshahi Asl A, 2014. Development of novel controlled release nanocomposite based on Poly (lactic acid) for increasing the oxidative stability of soybean oil. Food additives & Contaminants: Part A 31(9): 1586-1597.
Angles MN and Dufrense A, 2000. Plasticized starch/tunicin whiskers nanocomposites. 1. Structural analysis. Macromolecules 33: 8344-8353.
ASTM. Standard test methods for tensile properties of thin plastic sheeting. D882-10. Annual book of ASTM, 2010, Philadelphia, PA: American Society for testing and Materials.
ASTM. Standard test methods for water vapor transmission of material. E96-05. Annual book of ASTM, 2005, Philadelphia, PA: American Society for Testing and Materials.
Beigzadeh Ghelejlu S, Esmaiili M and Almasi H, 2016. Characterization of chitosan–nanoclay bionanocomposite active filmscontaining milk thistle extract. International Journal of Biological Macromolecules 86: 613–621.
Bonilla J, Talon E, Atarés, L, Vargas M and Chiraltm A, 2013. Effect of the incorporation of antioxidants on physicochemical and antioxidant properties of wheat starch–chitosan films. Journal of Food Engineering 118: 271–278.
Byun Y, Kim YT and Whiteside S, 2010. Characterization of an antioxidant polylactic acid (PLA) film prepared with α-tocopherol, BHT and polyethylene glycol using film cast extruder.  Journal of Food Engineering 100: 239-244.
Dashipour A, Razavilar V, Hosseini H, Aliabadi Sh, German JB, Ghanati K, Khakpour M and Khaksar R, 2015. Antioxidant and antimicrobial carboxymethyl cellulose films containing Zataria multiflora essential oil.International Journal of Biological Macromolecules 72: 606-613.
Fang J, Fowle, P. 2003. The use of starch and its derivatives as biopolymer sources of packaging materials. Food, Agriculture & Environment 1(3): 82-84.
Gacitua WE, Ballerini AA and Zhang J, 2005. Polymer nanocomposites: synthetic and natural fillers a review. Cienciay technologia 7(3): 159-178.
Ghanbarzadeh B and Almasi H, 2013. Boidegradable polymers. Pp. 141-186. In: Chamy R and Rosenkranz F (Eds). Biodegradation- life of science. InTech Publications, Croatia.
Ghanbarzadeh B, Almasi H and Entezami AA, 2011. Improving the barrier and mechanical properties of corn starch-based edible films: Effect of citric acid and carboxymethyl cellulose. Industrial Crops and Products 33: 229-235.
Ghanbarzadeh B, Almasi H and Oleyaei A, 2014. A novel modified Starch / carboxymethyl cellulose / montmorillonite bionanocomposite film: structural and physical properties. International Journal of Food Engineering 10(1): 121-130.
Ghasemlou M, Aliheidari N, Fahmi R, Aliabadi Sh, Keshavarz B, Cran MJ, Khaksar R, 2013.  Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. Carbohydrate Polymers 98: 1117– 1126. 
Gutierrez MG, Echeverria I, Ihl M, Bifani V and Mauri AN, 2012. Carboxy methyl cellulose–montmorillonite nanocomposite films activated with murta (Ugni molinae Turcz) leaves extract. Carbohydrate Polymers 87: 1495-1502.
Kanmani P and Rhim J.W, 2014. Antimicrobial and physical-mechanical properties of agar-based filmsincorporated with grapefruit seed extract. Carbohydrate Polymers 102; 708– 716.
Ma X, Chang PR, Jiugao Yu J and Stumborg M, 2009. Properties of biodegradable citric acid-modified granular starch/thermoplastic pea starch composites. Carbohydrate Polymers 75: 1–8.
Mascheroni E, Chalier P, Gontard N and Gastaldi B, 2010. Designing of a wheat gluten/montmorillonite based system as carvacrol carrier: Rheological and structural properties. Food Hydrocolloids 24: 406 -413.
Menzel C, Olsson E, Plivelic T, Andersson R, Johansson C, Kuktaite R, Jarnstrom L and Koch K, 2013. Molecular structure of citric acid cross-linked starch films. Carbohydrate Polymers 96(1): 270-276.
Muller P, Kapin E, Fekete E and Fekete E, 2014. Effects of preparation methods on the structure and mechanical properties of wet conditioned starch/montmorillonite nanocomposite films.  Carbohydrate Polymers 113: 569-576.
Neng W, Enyong D and Rongshi C, 2007. Surface modification of cellulose nanocrystals. Frontiers of Chemical Engineering in China 1(3): 228-232.
Olsson E, Hedenqvist M.S, Johanssona C and Jirnstrom L, 2013. Influence of citric acid and curing on moisture sorption, diffusion and permeability of starch films. Carbohydrate Polymers 94: 765– 772.
Pelissari F, Grossmann M, Yamashita F and Pineda E.A, 2009. Antimicrobial, mechanical, and barrier properties of cassava starch-chitosan films incorporated with oregano essential oil. Journal of Agricultural and Food Chemistry 57: 7499–7504.
Peng Y, Wu Y and Li Y, 2013. Development of tea extracts and chitosan composite films for active packaging materials. International Journal of Biological Macromolecules 59: 282– 289.
Reddy N and Yang Y, 2010. Citric acid cross-linking of starch films. Food Chemistry 118: 702–711.
Schwarz K and Ernst H, 1996.  Evaluation of Antioxidative Constituents from Thyme. Journal of the Science of Food and Agriculture 70: 217-223.
Sharififar F, Moshafi MH, Mansouri SH, Khodashenas M and Khoshnoodi M, 2007. In vitro evaluation of antibacterial and antioxidant activities of the essential oil and methanol extract of endemic Zataria multiflora Boiss. Food Control 18: 800-805.
Shi R, Bi J, Zhang Z, Zhu A, Chen D, Zhou X, Zhang L and Wei Tian W, 2008. The effect of citric acid on the structural properties and cytotoxicity of the polyvinyl alcohol/starch films when molding at high temperature. Carbohydrate Polymers 74: 763–770.
Siracusa V, Rocculi P, Romani S and Rosa MD, 2008. Biodegradable polymers for food packaging: a review. Trends in Food Science & Technology 19: 634-643.