Application of whey as a medium for cultivation of Donalia salina microalgae

Document Type : Research Paper

Authors

Abstract

Introduction: Microalgae are considered to be functional foods due to their unique bioactive compounds. Dunaliella salina is a single-celled green alga that lives in coastal waters, brackish waters, and rocky parts of ocean waters. This marine microalga contains beta-carotene pigment, phycocyanin, polysaccharides, iron, and zinc. Dunaliella salina is most important because of its high ability to collect various levels of beta-carotene. Beta-carotene of Dunaliella salina is currently widely used in the food and pharmaceutical industries. Feeding alkaline algae due to the presence of vitamins C and E and large amounts of beta-carotene increase the activity of complement and lysozyme, and ultimately increases the body's immune system. Also, the high level of protein and its usability has made algae a valuable source of protein. The price of the cultivation medium is one of the important factors affecting the final price of the biotechnological product. Whey is used as a culture medium for the cultivation of microorganisms, such as bacteria and algae, due to water-soluble proteins, minerals, organic acids, and vitamins. Regarding the high cost of culture medium used for microalgae cultivation, the aim of this study was to determine the feasibility of Dunaliella salina microalgae cultivation in whey as a cultivation medium and to study its biomass production.
Material and methods: In this research, the effect of different ratios of whey and Walne medium on the biomass production of Dunaliella salina and biochemical properties including total phenolic compounds, total flavonoid, soluble sugars and antioxidant activity were studied. For this purpose, three factors including the concentration of Walne medium (0, 25 and 50 μl), whey (0, 2.5 and 5%), and incubation time (0, 7 and 14 days) were studied using the response surface methodology in a Box-Behnken design with 17 samples. After collecting the data, a second-order model was used for fitting and regression analysis at α = 0.05. Finally, the optimal conditions were determined using numerical optimization and based on the desirability function. Statistical analysis was done with Design-Expert 17. For the cultivation of Dunaliella salina microalgae, 20 ml of algal suspension was added to 100 ml of mixed medium with various concentrations of Walne medium and whey in a sterile condition. The pH of the culture medium was adjusted to 5.7 by 6N HCl and NaOH. In order to create an ideal growth condition, the salinity of the culture medium was constant. The incubation temperature was 25◦C and light intensity was 2500 lux. The samples were kept in the same conditions for 14 days and the air pump was used to prepare aerobic condition for the samples.
Results and discussion: The results showed that with increasing whey content as well as Walne medium, cell density and flavonoids increased, which it was statistically significant (P<0.05). The results showed that the incubation time had a significant effect on cell density, antioxidant activity and soluble sugar (P<0.05), and cell density, antioxidant activity, soluble sugar, and amount of flavonoid decreased by increasing the incubation time. Also by increasing the percentage of whey and incubation time, the amount of soluble sugar decreased significantly at the end of incubation time (P<0.05). With increasing whey, total phenol content was not significantly decreased and soluble sugar content remained constant (P<0.05). By increasing the concentration of Walne medium and the incubation time, the antioxidant activity and soluble sugar decreased significantly (P<0.05). Minerals of whey such as calcium, phosphorus, magnesium, zinc, sodium and potassium are present in some of the chemical compounds of the Walne medium. As well as, whey contains a variety of water-soluble vitamins such as vitamins B12, B6, B5, B2, Acid folic acid and ascorbic acid which are essential to grow of Dunaliella salina and caused to increase its cell density. Sala et al. (2016) investigated the effect of whey protein concentrate on Spirulina platensis algae, and concluded that the use of whey protein concentrates in algae cultivation media increased the cell density (biomass) of Spirulina platensis. Generally, the changes in the antioxidant activity of Dunaliella salina cells depend on the concentration of nitrogen and NaCl sources. Also, the antioxidant level in Dunaliella salina increases with low nitrogen levels and high NaCl concentration and high light intensity. Therefore, due to the low nitrogen sources in this study, the antioxidant activity was decreased. Most algae increase the production of phenolic compounds under the environmental stress. Since this research has tried to minimize the environmental stresses in Dunaliella salina cultivation medium, it has reduced the production of phenolic compounds. Also, because phenolic compounds are produced at low temperatures, and the applied temperature to the growth of Dunaliella salina in this study was high which caused to reduce the amount of phenolic compounds. According to the literature, dilution of nutrients in Zarrouk medium and the addition of whey protein concentrate with high levels of lactose and low level of phosphorus, potassium and iron increase carbohydrate production in Spirulina platensis. So, the nitrogen concentration in the cultivation medium is a main factor that affecting the accumulation of carbohydrates in microalgae.
Conclusion: The optimum conditions were obtained at day 5 of incubation time, 5% whey and 0% of Walne medium. Based on the results of this study, the use of whey as a medium for cultivating Dunaliella salina microalgae has been successful.

انوری م، علیزاده ع و صادقی­پور م، 1389. بهینه سازی تولید پروتئین تک­یاخته از آب­پنیر توسط K.marxianusبه روش تاگوچی، مجله علوم زیستی، 4(3)،10-1.
بهشتی­فر س و شریعتی م، 1392. اثر تیتانیوم بر رشد و تولید رنگیزه­های فتوسنتزی جلبک تک­سلولی دونالیلا سالینا، مجله پژوهش­های گیاهی (مجله زیست شناسی ایران)، 28 (1)، 52-42.
پائیزی م، عینعلی ع و شریعتی م، 1391. بررسی رابطه بین تجمع بتاکاروتن و مقاومت به تنش سرما با استفاده از کینتیک فلوئورسنس کلروفیل a در جلبک سبز تک­سلولی Dunaliella، مجله پژوهش­های گیاهی (مجله زیست شناسی ایران)، 27(3)، 375-363.
جعفری ن، علوی ز و ابراهیم­زاده م ع، 1394. ارزیابی محتوای تام فنولی و فلاونوئیدی دو گونه از جلبک­های سبز به روش اسپکتروفتومتری و کروماتوگرافی مایع با کارایی بالا، مجله علمی-پژوهشی دانشگاه الزهرا (زیست شناسی کاربردی)، 29(1)، 78-51.
جمالی­فر ح، صمدی ن، فاضلی م و مشاک ز، 1389. تهیه نوشابه پروبیوتیکی بر پایه آب­پنیر با استفاده  از استارتر لاکتوباسیلوس کازئی  و استرپتوکوکوس ترموفیلوس، پاتوبیولوژی مقایسه­ای، 8(2)، 484-475.
حسن سلطان ط، نوروزی م و آموزگار م ع، 1395. بررسی میزان کلروفیل a و b و توتال کاروتنوئید و همچنین فعالیت آنتی­اکسیدانی چهار گونه جلبک سبز جدا شده از سواحل گلستان دریای خزر، مجله تازه­های بیوتکنولوژی سلولی- مولکولی، 6(24)، 36-31.
رحیمی س، صارم­نژاد س، 1399. اثر تخمیر بر میزان ترکیبات فراسودمند آرد مالت برنج قهوه‌ای. پژوهش­های صنایع غذایی،30 (1)، 137-150.
سلمانی­نژاد م، 1393. تاثیر محیط کشت و شدت نور بر رشد و کاروتنوئید­های جلبک Dunaliella salinaدریاچه ارومیه، مجله پژوهش­های گیاهی (مجله زیست شناسی ایران)، 28(4)، 783- 771.
علیشاهی م و کرمی­فر م، 1394. مقایسه تجویز خوراکی غلظت­های مختلف جلبک دونالیلا سالینا بر میزان کاروتنوئید پوست و رنگ ماهی سورم، مجله دامپزشکی ایران، 11(4)، 11-1.
فرامرزی م ع، فروتن­فر ح و شکیبائی م، 1389. بیوتکنولوژی ریزجلبک­ها، تهران: انتشارات دانشگاه تهران.
محمدی­یگانه ز، خدائیان ف، حسینی س، صفری م، رضایی ک و موسوی م، 1394. بررسی خواص آنتی­اکسیدانی و فیزیکی­شیمیایی نوشیدنی تخمیری آب­پنیر-پسته با استفاده از استارتر کفیر، فصلنامه فناوری­های نوین غذایی، 3(1) 84-69.
مخبری ر، رضایی الف و کرد ناییج ع، 1394. افزایش تولید بتاکاروتن و گلیسرول در کشت سلولی دونالیلا سالینا توسط امواج فراصوت، مجله سلول و بافت، 6(3)، 13-1.
نحوی الف، واعظ م و امتیازی گ، 1379. تولید کاروتنوئید از آب­پنیر توسط مخمر قرمز رنگ ردوترولا آکنیوروم، جداسازی شده از شیره درختان توس طالقان، مجله علوم و فنون کشاورزی و منابع طبیعی، 4(3)، 76-67.
یحیی­بیگی ف، 1391. انتقال ژن به دونالیلا سالینا با روش آگروباکتریوم تومه فاسینس، پایان نامه کارشناسی ارشد رشته بیوتکنولوژی کشاورزی، دانشگاه پیام نور کرج، ص 14.
Abd El‐Baky HH, El‐Baz FK and El‐Baroty GS, 2009. Natural preservative ingredient from marine alga Ulva lactuca L. International Journal of Food Science & Technology 44: 1688-1695.
Amar EC, Kiron V, Satoh S and Watanabe T, 2004. Enhancement of innate immunity in rainbow trout (Oncorhynchus mykiss Walbaum) associated with dietary intake of carotenoids from natural products. Fish & Shellfish Immunology 16: 527-537.
Boscaiu M, Sánchez M, Bautista I, Donat P, Lidón A, Llinares J and Vicente O, 2010. Phenolic compounds as stress markers in plants from gypsum habitats. Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. Horticulture 67: 44-49.
Close DC and McArthur C, 2002. Rethinking the role of many plant phenolics–protection from photodamage not herbivores. Oikos 99: 166-172.
Da Silva Borges W, Araújo BSA, Moura LG, Coutinho Filho U, de Resende MM and Cardoso VL, 2016. Bio-oil production and removal of organic load by microalga Scenedesmus sp. using culture medium contaminated with different sugars, cheese whey and whey permeate. Journal of Environmental Management 173: 134-140.
DuBois M, Gilles KA, Hamilton JK, Rebers PT and Smith F, 1956. Colorimetric method for determination of sugars and related substances. Analytical Chemistry 28: 350-356.
Djeridane A, Yousfi M, Nadjemi B, Boutassouna D, Stocker P and Vidal N, 2006. Antioxidant activity of some Algerian medicinal plants extracts containing phenolic compounds. Food Chemistry 97: 654-660.
El-Baky HA, El-Baz FK and El-Baroty GS, 2004. Production of Antioxidant by the Green Alga Dunaliella salina. International Journal of Agriculture & Biology 6: 49-57.
Hosseini Tafreshi A and Shariati M, 2009. Dunaliella biotechnology: methods and applications. Journal of Applied Microbiology, 107: 14-35.
Plazek A and Zur I, 2003. Cold-induced plant resistance to necrotrophic pathogens and antioxidant enzyme activities and cell membrane permeability. Plant Science 164: 1019-1028.
Salla ACV, Margarites AC, Seibel FI, Holz LC, Brião VB, Bertolin TE and Costa JAV, 2016. Increase in the carbohydrate content of the microalgae Spirulina in culture by nutrient starvation and the addition of residues of whey protein concentrate. Bioresource Technology 209: 133-141.
Shahidi F, 2004. Functional foods: their role in health promotion and disease prevention. Journal Food Science 69: 9–146.