Physical and chemical properties of oils extracted from fat tissues of ostrich (Canadian black neck breed)

Document Type : Research Paper

Authors

1 MSc Graduated of the Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran

2 Associate Professor of the Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran.

3 Assistant Professor of the Department of Food Science and Technology, Hedaj Branch, Islamic Azad University, Zanjan, Iran

Abstract

Introduction: The ostrich (Struthio canelus) is the largest and oldest bird in the world and belongs to the Ratite family, which is unable to fly and is adapted to living in hot areas and barren lands. Birds of this family are characterized by low-fat meat and low cholesterol. Ostrich oil makes up about 15% of their total body weight (Basuny et al., 2017) that is mainly composed of triglycerides and is free of phospholipids. Ostrich oil is a relatively new and very valuable source of animal fats, which in recent years has received special attention to the use of it in pharmaceutical and food industries. Today, ostrich oil is mostly used for health, cosmetic and also medicinal purposes. Little researches has been carried out on its use orally and there is no comprehensive information about the properties of adipose tissue oil in different parts of ostrich body. Therefore, the aim of this study was to investigate the physical and chemical properties of oil extracted from different parts of ostrich body and introduce it as a new source of edible fat.
Materials and Methods: In this study, adipose tissue from 3 parts (front of the heart, front of the chest and lower abdomen) were obtained from ostrich breeding farm (Karaj, Iran). Oil extraction was carried out according to wet melting method by using rotary evaporator at 80°C for 2 hrs. Then some physical and chemical properties of the extracted oil such as fatty acid composition, cholesterol and total sterol, tocopherol composition, melting point, refractive index, color and induction period were investigated. The fatty acid composition of oils was determined by employing a gas chromatograph equipped with a DEGS capillary column (60 m × 0.25 mm i.d.) and a flame ionization detector. Sterols and tocopherols were identified by gas chromatography and high performance liquid chromatography methods respectively. Refractive index of oils was determined by using a refractometer and color of samples were analysed by application of Lovibond. The induction period was performed on a Metrohm Rancimat apparatus model 743 at 110 °C with an air flow of 20 L/h. All the experiments and/or measurements were carried out in triplicate order. The data were statistically analyzed using the Statistical Analysis System software package on replicated test data. Analyses of variance were performed by application of an ANOVA procedure. Significant differences between the means were determined using the Duncan multiple range test.
Results and discussion: Based on the results, the highest amount of oil extracted from the abdominal parts (62.45%), front of the chest (40.35%) and front of the heart (38.58%) respectively. The main saturated and unsaturated fatty acids of extracted oils were palmitic and oleic acids respectively. The results of total saturated and unsaturated fatty acids in oil samples indicated that the highest amount of total saturated fatty acids was observed in oil obtained from the front of the heart (34.59%) and the lowest amount was observed in lower abdominal oil (33.72%) (P<0.05). The highest amount of unsaturated fatty acids was related to the lower abdomen oil (66.28%) and the lowest amount was in the front of the chest oil (65.44%) (P<0.05). The ratio of polyunsaturated fatty acids to saturated fatty acids (PUFA/SFA) in the oils of front of the heart, front of the chest and lower abdomen were 0.59, 0.61 and 0.65, respectively. The results of total sterol and cholesterol in the oil samples showed that the highest amount of total sterol (125.91 mg/100 g) and cholesterol (95.82 mg/100 g) were obtained in the oil of front of the heart. The highest levels of delta tocopherol (0.98 mg/100 g) were in the oil of anterior cardiac. The highest levels of alpha tocopherol (2.45 mg/100g) and beta tocopherol (0.87 mg/100g) were obtained in anterior thoracic oil. The samples were not different significantly in terms of gamma tocopherol and gamma tocotrienol. Melting point (29.31°C in all samples), refractive index (1.45 in all samples), yellow (35 Lovibond) and red (2 Lovibond) colors in the oils of the front of the heart, front of the chest and lower abdomen did not show significant differences. The highest induction period was obtained in the oil of front of the heart (11.58 hours) and the lowest stability was related to abdominal part (11.44 hours), Therefor no significant difference was observed between the induction period of the samples (P<0.05).
Conclusion: In this study, the results of the analysis of fatty acids in the studied oils showed that the composition of ostrich oil fatty acids in the lower abdomen, front of the heart and in front of the chest are the same and only their amounts were evaluated differently. According to the obtained results, ostrich oil can be considered as a valuable oil in the food industry due to its high content of essential fatty acids and tocopherol compounds, low cholesterol and good stability.

Keywords


جلیلیان ح ر و بیک نژاد د، 1397. بررسی خواص فیزیکوشیمیایی روغن حاصل از بذر توتون کشت شده در ایران، 8(4)، 78-63.
جمالی پور م، 1391. ﻣﻘﺎﻳﺴﻪ ﺧﺼﻮﺻﻴﺎت ﻓﻴﺰﻳﻜﻲ و ﺷﻴﻤﻴﺎﻳﻲ روﻏﻦ ﺷﺘﺮﻣﺮغ ﺑﺎ ﭘﺎﻳﻪ­ﻫﺎی ﺑﻬﺪاﺷﺘﻲ- آراﻳﺸﻲ. ﻧﺸﺮﻳﻪ داﻧﺸﮕﺎه ﻋﻠﻮم ﭘﺰﺷﻜﻲ اﻟﺒﺮز، 2 (1)، 47-50.
حاجی محمودی م، زمانی مزده ف، ترابی پ، مرادی خاتون آبادی ژ و شمس اردکانی م ر، 1392. بررسی پروفایل اسیدهای چرب روغن شترمرغ به روش کروماتوگرافی گازی. بیست و یکمین کنگره ملی علوم و صنایع غذایی دانشگاه شیراز.
خیری ف، درخشنام م و عزیزخانی س، 1393. بررسی کیفیت و خواص فیزیکو شیمیایی روغن شتر مرغ ، همایش ملی علوم و فناوری­های نوین در صنایع غذایی، دانشگاه آزاد اسلامی، واحد تربت حیدریه.
دلوی اصفهان م و دارایی گرمه خانی ا، 1390. ارزیابی کیفیت روغن شتر مرغ به منظور استفاده در فراورده­های آرایشی و غذایی، نشریه پژوهش­های صنایع غذایی، 21 (4)، 434-445.
سازمان ملی استاندارد ایران 1394. استاندارد 2-13126، روغن­ها و چربی­های گیاهی و حیوانی -کروماتوگرافی گازی متیل استرهای اسیدهای چرب-قسمت 2- تهیه متیل استرهای اسیدهای چرب.
صفری م، 1393 تکنولوژی روغن و چربی­های خوراکی، انتشارات دانشگاه تهران، چاپ دوم، 466 صفحه.
علی رضالو ا، علی رضالو ک، کریم زاده ق و امیدبیگی ا، 1390. بررسی تأثیر عوامل محیطی بر خصوصیات فیزیکوشیمیایی روغن گیاه دارویی کرچک، فصلنامه داروهای گیاهی،  10( 4)، 106-97.
قراچورلو م، قوامی م و آبرومند پ، 1384. ارزیابی کیفیت تالوی ایرانی به عنوان یک منبع چربی خوراکی، مجله علوم کشاورزی، 11 (3) : 30 – 21.
قوامی م، قراچورلو م و غیاثی طرزی ب، 1387. تکنیک­های آزمایشگاهی روغن­ها و چربی­ها، انتشارات دانشگاه آزاد اسلامی، واحد علوم و تحقیقات.
گلشنی ن، قوامی م و دلخوش ب، 1396. ارزیابی شیمیایی روغن استخراج شده از 7 رقم جدید کانولا، مجله علوم غذایی و تغذیه، 14 (4)، 24-15.  
محمدی ت، عزیزی م ح و تسلیمی ا، 1386. بررسی رابطه بین ترکیب اسیدهای چرب با پایداری روغن در مخلوط روغن­های آفتابگردان و کانولا، مجله علوم و صنایع غذایی، 4(2)، 67-76.
میرزایی رودکی م و سحری م  ع، 1392. بررسی پایداری اکسایشی روغن زیتون، فصلنامه علوم و صنایع غذایی، 39 (10)،75-61.
همدانی ف، حدادخداپرست م ح، اسماعیل زاده کناری ر و عطایى صالحى ا، 1393. مقایسه ساختار شیمیایی و پایداری حرارتی روغن مغز کلخونگ (pistacia khinjuk) به عنوان یک منبع جدید روغن نباتی با روغن زیتون، فصلنامه علوم و فناوری­های نوین غذایی، 2 (5)، ٩١-٨٣.
AOAC, 2000, Official Methods of Analysis, 17th Edition, The Association of Official Analytical Chemists, Gaithersburg MD, USA.
AOCS, 2000, American Oil Chemists' Society. USA.
Basuny A M M, Arafat Sh. M, and Nasef Sh L 2011. Utilization of ostrich oil in foods. International Research Journal of Biochemistry and Bioinformatics 2 (8): 199-208.
Basuny A M M, Arafat Sh M, and Soliman HM, 2017. Biological Evaluation of 19-Ostrich Oil and Its Using for Production of Biscuit. Egypt Journal Chemistry 60 (6): 1091-1099.
Belichovska D, Hajrulai-Musliu Z, Uzunov R, Belichovska K, and Arapcheska M, 2015. Fatty acid composition of ostrich (Struthio Camelus) abdominal adipose tissue. Macedonian Veterinary Review 38 (1): i-vii.
Deeming DC, 1999. The Ostrich Biology, Production and Health. Cambridge University Press: London.
García-González D, Aparicio- Ruiz R and Aparicio R, 2008. Virgin olive oil - Chemical implications on quality and health. European Journal of Lipid Science and Technology 110: 602–607.
Haila K and Heinonen M, 1994. Action of â-carotene on purified rapeseed oil during light storage. LWT - Food Science and Technology 27: 573-577.
Horbanczuk JO, Malecki I, Cooper RG. Jóźwik A, Klewiec J, Krzyżewski J, Khalifa H, Chyliński W, Wójcik A, and Kawka M, 2004. Cholesterol content and fatty acid composition of two fat depots from slaughter ostriches (Struthio camelus) aged 14 months. Animal Science Papers and Reports 22 (2): 247-251.
Horbańczuk O F, and Wierzbicka A, 2016. Technological and nutritional properties of ostrich, emu, and rhea meat quality. Journal of Veterinary Research 60: 279-286.
Hraš AR, Hadolin M, Knez Ž and Bauman D, 2000. Comparison of antioxidative and synergistic effects of rosemary extract with α-tocopherol, ascorbyl palmitate and citric acid in sunflower oil. Food Chemistry 71: 229-233
Liu C, Wang XD, Mucci L, Gaziano JM, Zhang SMM, 2009. Modulation of lung molecular biomarkers by beta-carotene in the Physicians’ Health Study. Cancer 115: 1049-1058.
Mandigo RW, 1999. Meat processing: modification of processed meat, in: Fat and cholesterol reduced foods (Chuck Haberstroh and Charles E, Morris, Eds). Portfolio Publishing Company, The Woodlands, Texas, USA, 119-131.
Matsushita S and Terao J, 1980. Singlet oxygen-initiated photooxidation of usaturated fatty acid esters and inhibitory effects of tocopherols and â-carotene. In: Autoxidation in Food and Biological Systems; Simic, M, Karel, M, eds, Plenum Press: New York pp. 27-44.
Meléndez-Martínez AJ, Vicario IM and Heredia FJ,2007. Carotenoid pigments: structural and physicochemical considerations. Archivos Latinoamericanos de Nutrición 57: 109–117.
Palanisamy UD, Sivanathan M, Subramaniam T, Radhakrishnan AK, Haleagrahara N, Sundralingam U, and Chiew Gs, 2015. Refining Ostrich Oil and its Stabilization with Curcumin. Journal of Nutritional Health & Food Engineering 2 (2): 1-7.
Shen Y, Hu Y, Huang K, Yin S, Chen B, and Yao S, 2009. Solid-phase extraction of carotenoids. Journal of Chromatography A 1216: 5763-5768.