ایجاد سیستم طبقه‌بندی بر اساس پردازش تصویر جهت جداسازی کیفی زالزالک طی نگهداری در شرایط مختلف (سردخانه، یخچال و محیط)

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و مهندسی صنایع غذایی، دانشگاه زنجان

چکیده

زمینه مطالعاتی: مشخصه ظاهری میوه‌ها بر ارزش تجاری، ترجیح و انتخاب مصرف‌کننده مؤثر است. درجه‌بندی میوه در صنایع بسته‌بندی بسیار ضروری می‌باشد، زیرا تقاضای زیادی برای میوه‌های مرغوب و با کیفیت در بازار وجود دارد. هدف: هدف ایجاد یک سیستم درجه‌بندی میوه بر اساس کیفیت آن طی نگهداری با استفاده از خصیصه‌های رنگی و با کمک تکنیک تجزیه و تحلیل تصویر است. روش کار: درجه‌بندی میوه‌های زالزالک به سه درجه کیفی (A، B و C) طی نگهداری در شرایط مختلف (یخچالی، سردخانه و محیط) با استفاده از تکنیک تجزیه و تحلیل تصویر انجام شد. برای مقایسه نتایج تجزیه و تحلیل تصویر و طبقه‌بندی بصری، خصوصیات فیزیکی‌‌شیمیایی و هندسی میوه تعیین شد. پارامترهای کیفی رنگی (L*، a*، b*، c*، h* و ) پارامترهای هندسی، افت وزن، سفتی بافت، میزان مواد جامد محلول (TSS)، pH، اسیدیته قابل تیتر (TA) و شاخص رسیدگی (RPI) فاکتورهای اندازه‌گیری شده است. تجزیه و تحلیل مؤلفه اصلی به منظور ارزیابی ارتباط بین متغیرها استفاده شد. نتایج: اولین همبستگی بین پارامترهای فیزیکی‌‌شیمیایی و رنگی انجام گردید که همبستگی بالای بین تمامی متغیرها به‌جز خصیصه  وجود داشت؛ پارامترهای فیزیکی‌‌شیمیایی و رنگی توانستند تغییرات را با قابلیت اطمینان 2/94 درصد توصیف نمایند. با استفاده از پارامترهای رنگی و بدون حضور پارامترهای فیزیکی‌‌شیمیایی، تغییرات را با قابلیت اطمینان 4/97 درصد توصیف گردید. از دو سیستم طبقه‌بندی تحلیل تفکیک خطی (LDA) و تحلیل تفکیک درجه دو (QDA) برای ارزیابی کارایی سیستم بینایی استفاده شد. نتایج نشان داد که دو سیستم طبقه‌بندی تحلیل تفکیک خطی و تحلیل تفکیک درجه دو قادرند تا زالزالک‌ها را با دقت 99 و 5/99 درصد به درجه کیفی درست خود طبقه‌بندی نماید. نتیجه‌گیری نهایی: بنابراین روش پیشنهادی جدید امکان طبقه‌بندی سریع و دقیق میوه‌ها بر اساس درجه کیفی فراهم می‌آورد؛ و می‌توان آن را به راحتی در کارخانه‌های فرآوری کاربردی نمود.
 

کلیدواژه‌ها


عنوان مقاله [English]

Development of quality grading system based on image processing for hawthorn classification during various storage condition (cold, refrigerator and room)

نویسندگان [English]

  • M Zandi
  • A Ghanjloo
  • M Bimakr
چکیده [English]

Introduction: The crucial sensory characteristic of fruits is appearance that impacts their market value, the consumer’s preference and choice (Afsharnia et al., 2017). The task of fruit grading is vital in the packaging industry because there is a great demand for high quality fruits in the market (Liming and Yanchao 2010). Optical sensors have been used for grading, sorting, and fruit quality detection of different crops (Mohammadi et al., 2015). Today, in various agricultural commodity grading systems, computer vision has become an alternative to visual inspection being objective, consistent, rapid, and economical (Chai et al., 2014). Color is the major attribute to assess quality of agricultural products more than any other single factor (Moallem et al., 2017). It represents the degree of maturity, sugar content, acidity, and taste. For instance, in fresh fruit market such as apples and peaches, darker red color represents higher quality fruit than does light red (Cardenas-Perez et al., 2017). Computer vision is a non-destructive method that can be used for inspection and has found to be applicable in both the food industry and precision agriculture, including the inspection and grading of fruits and vegetables (Wan et al., 2018). This paper proposes an automatic and effective hawthorn fruit grading system based on computer vision-based algorithm. Blasco et al. (2008) developed a computer vision-based machine for detecting and removing unwanted material and sorting the pomegranate arils by color. Liming and Yanchao (2009) developed an automated strawberry grading system using image processing technique and graded the strawberry adopting one or two or three indices among shape, color and size. Okamoto and Lee (2009) developed an image processing method to detect green citrus fruit in individual trees to apply for crop yield estimation at a much earlier stage of growth (Mohammadi et al., 2015).
Material and methods:Grading of hawthorn fruits into three quality grades (A, B and C) was conducted by image analysis technique. Physicochemical and geometrical properties of fruits were determined to compare the results of image analysis and visual classification. Color quality parameters ( ) geometrical parameters, weight loss, firmness, total soluble solid (TSS), pH, treatable acidity (TA) and ripening index (RPI) were the measured factors. TSS content was directly measured from the obtained juice using a refractometer. From the same juice the titratable acidity (TA) was determined. The hawthorn firmness was measured by means of a penetration test using a Texturometer Analyzer. In this study, a machine vision algorithm was developed to capture the images of the hawthorn samples, and then it extracted the feature color value to classify quality grade of the hawthorn fruits. For this work RGB images were captured with a resolution of 1936  1288 pixels and stored on the computer in TIFF format. Different color spaces have been compared in previous works in which it was concluded that the CIELab space is the most appropriate for the measurement of fruit color. From each image, squares from the equatorial area of the fruit were cropped, trying to obtain the greatest possible area but avoiding areas with excessively bright pixels. For the calibration process and image analysis, conversions were performed by using the color space converter plugin for the public domain image processing application ImageJ software. Next, the values of chroma (C*) and hue angle (h*) were also calculated. Principal component analysis (PCA) was used to analyze the dataset obtained from the study of the hawthorn storage. The first set of 200 hawthorns was arranged in a matrix of 14 variables ( ، ، ، ، ، ، ، ، ، ، ،  and ) ×200 averaged measurements. This matrix was used to calculate the Pearson correlation matrix, variable contributions, factorial loadings, eigenvalues, and percentage of variance of the principal components related to the original variables. Later, a second model was built including only the color variables and was used to classify the hawthorns into quality grade.
Results and discussion:Principal component analysis was used to evaluate the correlation between variables. A first correlation was performed between physicochemical and color parameters and variables correlated correctly between each other except for L*, but both described the samples variability with 94.2% reliability. Using only color parameters, the samples were described accurately with 97.4% reliability. Two classifiers based on linear (LDA) and quadratic discriminant analysis (QDA) were used to assess the applicability of vision system. Color parameters obtained by means of CVS under laboratory conditions provided an adequate classification of the quality grade of hawthorn fruits and showed a good correlation with the flesh physicochemical parameters measured. LDA and QDA were capable of classifying hawthorn in their correct quality grade with 99% and 99.5% accuracy, respectively.
Conclusion:The current study used image analysis technique to classify hawthorn fruits into three commercially quality grade (A, B and C). The written algorithm captured an image, eliminated the noises, obtained binary image, removed the noise, and ultimately extracted the color features. This demonstrates that it is possible to create a reliable and objective method for the non-destructive evaluation of quality grade. The selection of variables performed using PCA and the classification model built by means of LDA and QDA allowed adequate classification of the hawthorn according to quality grade using only ، ، ،  and . Thus, it was concluded that external color features of hawthorn fruits can be potentially used to classify the fruits with a proper probability.

Afsharnia F, Mehdizadeh S, Ghaseminejad M and Heidari M, 2017. The effect of dynamic loading on abrasion of mulberry fruit using digital image analysis. Imformation Processing in Agriculturale 4:291-299.
Arakeria M and Lakshmana A, 2016. Computer Vision Based Fruit Grading System for Quality Evaluation of Tomato in Agriculture industry. Procedia Computer Science 79:426–433.
Arzate-Vazquez I, Chanona-Perez J, Perea-Flores M, Calderon-Domı´nguez G, Moreno-Armendariz M and Gutierrez-Lopez G, 2011. Image processing applied to classification of avocado variety Hass (Persea americana Mill) during the ripening process. Food and Bioprocess Technology 4:1307-1313.
Baigvand M, Banakar A, Minae S, Khodaei J and Behroozi-Khazaei N, 2015. Machine vision system for grading of dried figs. Computers and Electronics in Agriculture 119:158–165.
Cardenas-Perez S, Chanona-Perez J, Mendez-Mendez J, Calderon-Domınguez G, Lopez-Santiago R, Perea-Flores M and Arzate-Vazquez I, 2017. Evaluation of the ripening stages of apple (Golden Delicious) by means of computer vision system. Biosystems Engineering 159:46-58.
Chai W, Chen C, Gao Y, Feng H, Ding Y, Shi Y and Chen Q, 2014. Structural analysis of proanthocyanidins isolated from fruit stone of Chinese hawthorn with potent antityrosinase and antioxidant activity. Journal of Agricultural and Food Chemistry 62:123–129.
Chang W, Dao J and Shao Z, 2005. Hawthorn: Potential roles in cardiovascular disease. The American Journal of Chinese Medicine 33:1–10.
Donis-González I, Guyer D, Leiva-Valenzuela G and Burns J, 2013. Assessment of chestnut (Castanea spp.) slice quality using color images. Journal of Food Engineering 115(3):407-414.
Helrich K, 1990. AOAC Official Methods of Analysis. Official Methods of Analysis of the AOAC International.
Hosseinpour S, Rafiee S, Mohtasebi S and Aghbashlo M, 2012. Application of computer vision technique for on-line monitoring of shrimp colour changes during drying. Journal of Food Engineering 115:99–114.
Huang Y, Lub R and Chena K, 2017. Development of a multichannel hyperspectral imaging probe for property and quality assessment of horticultural products. Postharvest Biology and Technology 88-97.
Jackman P and Sun DW, 2013. Recent advances in image processing using image texture features for food quality assessment. Trends in Food Science & Technology 29:35-43.
Kienzle S, Sruamsiri P, Carle R, Sirisakulwat S, Spreer W and Neidhart S, 2011. Harvest maturity specification for mango fruit (Mangifera indica L. ‘Chok Anan’) in regard to long supply chains. Postharvest Biology and Technology 61(1):41-45.
Li C, Han W and Wang MH, 2010. Antioxidant Activity of Hawthorn Fruit in vitro. Journal of Applied Biological Chemistry 53(1):8-12.
Li WQ, Hu QP and Xu JG, 2015. Changes in physicochemical characteristics and free amino acids of hawthorn (Crataegus pinnatifida) fruits during maturation. Food Chemistry 175:50–56.
Liming, X and Yanchao Z, 2010. Automated strawberry grading system based on image processing. Computers and Electronics in Agriculture 71:32-39.
Liu S, Chang X, Liu X and Shen Z, 2016. Effects of pretreatments on anthocyanin composition, phenolics contents and antioxidant capacities during fermentation of hawthorn (Crataegus pinnatifida) drink. Food Chemistry 212:87–95.
Liu S, Zhang X, You L, Guo Z, and Chang X, 2018. Changes in anthocyanin profile, color, and antioxidant capacity of hawthorn wine (Crataegus pinnatifida) during storage by pretreatments. LWT - Food Science and Technology 95:179–186.
Makky M and Soni P, 2013. Development of an automatic grading machine for oil palm fresh fruits bunches (FFBs) based on machine vision. Computers and Electronics in Agriculture 93:129–139.
Moallem P, Serajoddin A and Pourghassem H, 2017. Computer vision-based apple grading for golden delicious apples based on surface features. information Processing in Agriculture 4(1):33-40.
Mohammadi V, Kheiralipour K and Ghasemi-Varnamkhasti M, 2015. Detecting maturity of persimmon fruit based on image processing technique. Scientia Horticulturae 184:123–128.
Momina M, Rahmana M, Sultana M, Igathinathane C, Ziauddin A and Grift T, 2017. Geometry-based mass grading of mango fruits using image processing. Information Processing in Agriculture 4(2):150-160.
Mraihi F, Hidalgo M, Pascual-Teresa S, Trabelsi-Ayadi M and Cherif J, 2015. Wild grown red and yell ow Hawthorn fruits from Tunisia as source of antioxidants. Arabian Journal of Chemistry 8:570-578.
Muhammad G, 2015. Date fruits classification using texture descriptors and shape-size features. Engineering Applications of Artificial Intelligence 37:361–367.
Nordey T, Léchaudel M, Génard M and Joas J, 2014. Spatial and temporal variations in mango colour, acidity, and sweetness in relation to temperature and ethylene gradients within the fruit. Journal of plant physiology 171(17):1555-1563.
Nouri-Ahmadabadi H, Omid M, Mohtasebi S and Soltani Firouz M, 2017. Design, development and evaluation of an online grading system for peeled pistachios equipped with machine vision technology and support vector machine. Information Processing in Agriculture 4(4):333-341.
Ornelas-Paz J, Yahia E and Gardea A, 2008. Changes in external and internal color during postharvest ripening of 'Manila' and 'Ataulfo' mango fruit and relationship with carotenoid content determined by liquid chromatography-APcI + -time-of-flight mass spectrometry. Postharvest Biology and Technology 50(2):145-152.
Ozcan M, Hacıseferogulları H, Marakoglu T and Arslan D, 2005. Hawthorn (Crataegus spp.) fruit: some physical and chemical properties. Journal of Food Engineering 69:409-413.
Pittler M, Schmidt K and Ernst E, 2003. Hawthorn extract for treating chronic heart failure: Meta-analysis of randomized trials. The American Journal of Medicine 114:665–674.
Pourdarbani R, Ghassemzadeh H, Seyedarabi H, Nahandi F, and Moghaddam Vahed M, 2015. Study on an automatic sorting system for Date fruits. Journal of the Saudi Society of Agricultural Sciences 14(1):83-90.
Razavi F, Roghayeh M, Rabiei V, Soleimani Aghdam M and Soleimani A, 2018. Glycine betaine treatment attenuates chilling injury and maintains nutritional quality of hawthorn fruit during storage at low temperature. Scientia Horticulturae 233:188-194.
Sabzi S, Abbaspour-Gilandeh Y and García-Mateos G, 2018. A new approach for visual identification of orange varieties using neural networks and metaheuristic algorithms. Information Processing in Agriculture 5(1): 162-172.
Sofu M, Erb O, Kayacan M and Cetisli B, 2016. Design of an automatic apple sorting system using machine vision. Computers and Electronics in Agriculture 395-405.
Vesquez-Caicedo A, Sruamsiri P, Carle R and Neidhart S, 2005. Accumulation of all-trans-beta-carotene and its 9-cis and 13-cis stereoisomers during postharvest ripening of nine Thai mango cultivars. Journal ofAgricultural and Food Chemistry 53(12):4827-4835.
Vélez-Rivera N, Blasco J, Chanona-Pérez J, Calderón-Domínguez G, Perea-Flores M, Arzate-Vázquez I and Farrera-Rebollo R, 2014. Computer Vision System Applied to Classification of “Manila” Mangoes During Ripening Process. Food and Bioprocess Technology, 7(4):1183–1194.
Wan P, Toudeshki A, Tana H and Ehsani R, 2018. A methodology for fresh tomato maturity detection using computer vision. Computers and Electronics in Agriculture 146:43-50.
Zhang Z, Ho W, Huang Y and Chen Z, 2002. Hypocholesterolemic activity of hawthorn fruit is mediated by regulation of cholesterol-7alphahydroxylase and acylCoA: Cholesterol acyltransferase. Food Research International 35:885–891.
Zhua R, Li T, Dong Y, Liu Y, Li S, Chen G and Jia Y, 2013. Pectin pentasaccharide from hawthorn (Crataegus pinnatifida Bunge. Var. major) ameliorates disorders of cholesterol metabolism in high-fat diet fed mice. Food Research International 262-268.