بهینه‌سازی ساختار شبکه عصبی مصنوعی با استفاده از الگوریتم ژنتیک برای پیش‌بینی پارامترهای فرآیند آبگیری به روش اسمزی- فراصوت از کیوی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه علوم و صنایع غذایی، دانشگاه بوعلی سینا، همدان، ایران

2 دانشجوی کارشناسی ارشد، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

زمینه مطالعاتی: یکی از مهمترین کاربردهای شبکه‌های عصبی مصنوعی، طراحی مدلی است که بتوان براساس آن مقدار یک یا چند متغیر وابسته را به کمک متغیرهای مستقل پیش‌بینی کرد. الگوریتم ژنتیک یکی از روش‌های بهینه‌سازی مسائل و مدل‌ها است که اساس آن بر انتخاب طبیعی و برخی از مفاهیم مهم از علم ژنتیک استوار است. هدف: در این مطالعه از روش الگوریتم ژنتیک- شبکه عصبی مصنوعی برای پیش‌بینی درصد کاهش وزن، درصد کاهش آب، درصد جذب مواد جامد و درصد آبگیری مجدد برش‌های کیوی آب‌گیری شده به روش اسمز-فراصوت استفاده شد. روش کار: ساختار الگوریتم ژنتیک- شبکه عصبی مصنوعی با 3 ورودی زمان اعمال فراصوت (در هشت زمان 10، 20، 30، 40، 50، 60، 70 و 80 دقیقه)، غلظت محلول ساکارز (در سه سطح 20، 30 و 40 درجه بریکس) و توان فراصوت (در سه سطح 0، 75 و 150 وات)، برای پیش‌بینی ویژگی‌های برش‌های کیوی آبگیری شده، توسعه یافت. نتایج: میانگین درصد کاهش رطوبت برای نمونه شاهد (بدون اعمال فراصوت) 96/21 درصد بود. با افزایش توان فراصوت دستگاه به 150 وات، میانگین درصد کاهش رطوبت نمونه‌ها 51/27 درصد افزایش یافت (05/0>P). با افزایش غلظت محلول اسمزی از 20 به 40 درصد، میانگین درصد کاهش رطوبت نمونه‌ها به‌طور معنی‌داری از 58/16 درصد به 33/35 درصد افزایش یافت (05/0>P). مقادیر ضرایب تبیین (r) محاسبه‌شده برای پیش‌بینی درصد کاهش وزن، درصد کاهش آب، درصد جذب مواد جامد و درصد آبگیری مجدد برش‌های کیوی آبگیری شده با استفاده از روش الگوریتم ژنتیک- شبکه عصبی مصنوعی به ترتیب برابر 983/0، 989/0، 992/0 و 979/0 بود. براساس نتایج آزمون آنالیز حساسیت، پارامتر آبگیری مجدد، حساس‌ترین پارامتر به تغییرات غلظت محلول اسمزی و افزایش زمان اعمال فراصوت بود. نتیجه‌گیری نهایی: نتایج به دست آمده از این روش نشان می‌دهد که روش الگوریتم ژنتیک- شبکه عصبی مصنوعی یک راه‌حل مناسب برای مدل‌سازی فرآیند آبگیری از کیوی به روش اسمز- فراصوت است.

کلیدواژه‌ها


عنوان مقاله [English]

Optimization of artificial neural network structure by using genetic algorithm for predicting dehydration process parameters by osmosis-ultrasound method from kiwifruit

نویسندگان [English]

  • Fakhreddin Salehi 1
  • Rana Cheraghi 2
1 Associate Professor, Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
2 MSc Student, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

Introduction: One of the most important applications of artificial neural networks is to design a model based on which the value of one or more dependent variables can be predicted using independent variables. A genetic algorithm is one of the methods for optimizing problems and models, based on natural selection and some essential concepts of genetics. The performance of artificial neural networks (ANN) was reported by some researchers. They said that these approaches can estimate the characteristics of various fruits and vegetables with high precision. It has been shown that nonlinear techniques based on ANN are far better in generalization and estimation than empirical models. Determination of the best number of neurons in hidden layers of ANN models is generally carried out by trial and error. The genetic algorithm optimization method can be used to overcome this inherent limitation of ANN (Hafezi et al. 2020; Amini et al. 2021; Satorabi et al. 2021). Osmotic dehydration is an easy method for removing water from fruit and vegetable particles. At the same time, the correct term is “osmotic dewatering” while the final product still has high water content (Salehi et al. 2015). Ultrasound (sonication) treatments support the removal of intracellular water from fruit or vegetable particles to the surroundings as a result of a quick series mechanism of compressions and expansions (the phenomenon of cavitation). The use of continuous high-frequency ultrasound improves the mass transport rate during osmo-concentration. Also, the reduction of dehydration time and, as a result, processing costs have lately been reported at the laboratory scale after research conducted on some fruit and vegetable particles (Fernandes et al., 2008; Awad et al., 2012; Mohsen et al., 2017; Azarpazhooh et al., 2019; Salehi, 2020b; Salehi et al., 2022). In this study, the genetic algorithm-artificial neural network method was used to predict the weight reduction percentage, water loss percentage, solids gain percentage and rehydration percentage of kiwifruit slices dehydrated by the osmosis-ultrasound way.
Material and methods: Fresh kiwifruits of the Actinidia deliciosa variety were harvested in a patch located in Sari, Mazandaran Province, Iran. Before the experiments, the fresh and uniform-size kiwifruits with no external damage were selected, and with the aid of an industrial slicer (Girmi, Italy), cut into 0.5 cm thickness slices. The fresh kiwifruit slices moisture content (MC) was 84% w.b. (was calculated at 105°C for four hours, in an air forced oven, Shimaz, Iran). The ultrasonic treatments were carried out using an ultrasonic bath. The operating frequency of the bath was 40 kHz. The temperature of the osmotic solutions was maintained at 50°C. Treatments were structured in combinations of 8 time intervals: 10, 20, 30, 40, 50, 60, 70, and 80 min; three osmotic solutions concentrations: 20, 30, and 40 °Brix; and three sonication power levels: 0, 75, and 150 watts. Treatments performed at 0 W were not subjected to sonication and were considered as control samples. The osmotic solutions were prepared by adding food-grade sucrose to water until concentrations of 20, 30, and 40 °Brix (% w/w) were attained. Each kiwifruit slice was immersed in the ultrasonic bath filled with 4L of treatment solution. Neurosolution software (version 5, NeuroDimension, Inc., USA) was employed for making the genetic algorithm–artificial neural network (GA-ANN) model. In the hidden layers and output layer a hyperbolic tangent activation function was used. The Levenberg–Marquardt optimization method was applied to network training. The crossover probability and the mutation probability operators were adjusted equal to 0.9 and 0.01, respectively. Also, a sensitivity analysis was done to supply the measure of relative significance between the inputs of the ANN model and to show how the model output changed in response to input changes. Genetic algorithm structure-artificial neural network with three inputs of ultrasound treatment time (in eight times of 10, 20, 30, 40, 50, 60, 70 and 80 minutes), sucrose solution concentration (in three levels of 20, 30 and 40 °Brix) and ultrasound power (at three levels of 0, 75 and 150 watts) was developed to predict the characteristics of dehydrated kiwifruit slices.
Results and discussion: It was considered that the weight reduction of kiwifruit slices increased with the enhancement in sonication powers. Also, it was observed that weight reduction increased with the enhancement in osmotic solution concentration from 20% to 40%. With increasing the ultrasonic power to 150 W, the average moisture loss percentage of the samples increased by 27.51% (P<0.05). With increasing the osmotic solution concentration from 20 to 40%, the average moisture loss percentage in the samples increased significantly from 16.58% to 35.33% (P<0.05). The results of modeling showed that a network with eight neurons in a hidden layer and using the hyperbolic tangent activation function could predict the dehydration process parameters of kiwifruit slices. The values of coefficients of determination (r) calculated to indicate the weight reduction percentage, water loss percentage, solids gain percentage and rehydration percentage of kiwifruit slices dehydrated using the genetic algorithm-artificial neural network method were 0.983, 0.989, 0.992 and 0.979, respectively.
Conclusion: Based on the results of the sensitivity analysis test, the rehydration parameter was the most sensitive parameter to changes in osmotic solution concentration and increasing the ultrasonic treatment time. The results obtained from this method show that the genetic algorithm-artificial neural network method is a suitable solution for modeling the kiwifruit dehydration process by the osmosis-ultrasound technique.

کلیدواژه‌ها [English]

  • Rehydration
  • Sensitivity analysis
  • Solids gain
  • Sucrose
خاکباز‌حشمتی م و سیفی‌مقدم ا، 1396، بررسی تکنیک متناوب مایکروویو- هوای گرم بر خواص کیفی و تغذیه‌ای برگه‌های کیوی خشک‌شده. پژوهش‌های صنایع غذایی، 27(1)، 126-111.
صالحی ف و ساترابی م، 1401، مدل‌سازی فرآیند خشک کردن برش‌های هلو پوشش‌ داده‌شده با صمغ‌های دانه ریحان و گزانتان با سامانه فروسرخ. پژوهش‌های صنایع غذایی، 32(3)، 28-17.
AOAC, 2010. Official methods of analysis, 16th edition. Association of Official Analytical Chemists, Washington DC, USA.
Awad TS, Moharram HA, Shaltout OE, Asker D, Youssef MM, 2012. Applications of ultrasound in analysis, processing and quality control of food: A review. Food Research International 48(2): 410-427.
Azarpazhooh E, Sharayeei P, Gheybi F, 2019. Evaluation of the effects of osmosis pretreatment assisted by ultrasound on the impregnation of phenolic compounds into aloe vera gel and dry product quality. Food Engineering Research 18(66): 143-154.
Davallou M, Heidari T, 2018. Comparison of stock index forecasting using hybrid models based on genetic algorithm and harmonic search with artificial neural network. Quarterly Journal of Quantitative Economics 15(3): 105-127.
Fernandes FA, Gallão MI, Rodrigues S, 2008. Effect of osmotic dehydration and ultrasound pre-treatment on cell structure: Melon dehydration. LWT-Food Science and Technology 41(4): 604-610.
Fernandes FAN, Gallão MI, Rodrigues S, 2009. Effect of osmosis and ultrasound on pineapple cell tissue structure during dehydration. Journal of Food Engineering 90(2): 186-190.
Gharibi Tehrani M, Azar Pazhooh E, Pedram Nia A, Estiri SH, 2020. Mass transfer kinetic by ultrasound treatment-osmosis in slices yellow onion. Journal of Innovation in Food Science and Technology 12(1).
Hafezi N, Bahrami H, Sheikh Davoodi MJ, Alavi SE, 2020. Hybrid artificial neural network with meta-heuristic algorithms for predicting sugarcane yield. Iranian Journal of Biosystems Engineering 51(3): 515-526.
Mirabdolahi M, Abootorabi MM, 2019. Optimization and modeling of plasma cutting of AISI 309 stainless steel by using neural network-genetic algorithm hybrid model. Modares Mechanical Engineering 19(10): 2455-2462.
Mokhtariyan M, Mahmmodi M, Maleki M, Mahjoorian A, 2017. Performance investigation of arrangement type of perceptron neural network to predict mass transfer kinetic of daikon ultrasound-osmotic dehydration. Food Science and Technology 13(12): 33-43
Mokhtarian M, Heidari Majd M, Daraei Garmakhany A, Zaerzadeh E, 2021. Predicting the moisture ratio of dried tomato slices uusing artificial neural network and genetic aalgorithm modeling. Journal of Research and Innovation in Food Science and Technology 9(4): 411-422.
Monadjemi SA, Abzari M, Rayati Shavazi A, 2009. Modeling of stock price forecasting in stock exchange market, using fuzzy neural networks and genetic algorithms. Quarterly Journal of Quantitative Economics 6(22): 1-26.
Pourmohammadali B, Hosseinifard SJ, Hassan Salehi M, Shirani H, Esfandiarpour Boroujeni I, 2019. Effects of soil properties, water quality and management practices on pistachio yield in Rafsanjan region, southeast of Iran. Agricultural Water Management 213: 894-902.
Salehi F, 2020a. Food industry machines and equipment. Bu-Ali Sina University Press, Hamedan, Iran.
Salehi F, 2020b. Physico-chemical properties of fruit and vegetable juices as affected by ultrasound: A review. International Journal of Food Properties 23(1): 1748-1765.
Salehi F, Abbasi Shahkoh Z, Godarzi M, 2015. Apricot osmotic drying modeling using genetic algorithm - artificial neural network. Journal of Innovation in Food Science and Technology 7(1): 65-76.
Salehi F, Cheraghi R, Rasouli M, 2022. Influence of sonication power and time on the osmotic dehydration process efficiency of banana slices. Journal of Food Science and Technology (Iran).
Satorabi M, Salehi F, Rasouli M, 2021. The influence of xanthan and balangu seed gums coats on the kinetics of infrared drying of apricot slices: GA-ANN and ANFIS modeling. International Journal of Fruit Science 21(1): 468-480.
Taghizadeh R, Fattahi A, Tahari MH, Babaei H, 2015. Evaluating hybrid model of artificial neural networks and genetic algorithms for forecasting consumption of energy in Iran agricultural sector. Agricultural Economics Research 7(27): 149-166.
Yusefi A, Dilmaghanian S, Ziaforoughi A, Moezzi M, 2019. Study on infrared drying kinetics of quince slices and modelling of drying process using genetic algorithm-artificial neural networks (GA-ANNs). Innovative Food Technologies 6(2): 175-186.