پیش‌بینی مقدار رطوبت برش‌های سیر هنگام خشک‌کردن فروسرخ با استفاده از شبکه عصبی مصنوعی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، گروه علوم و صنایع غذایی، دانشکده صنایع غذایی بهار، دانشگاه بوعلی سینا، همدان، ایران.

2 استادیار، گروه مهندسی ‌علوم و صنایع غذایی، دانشکده صنایع غذایی بهار، دانشگاه بوعلی سینا، همدان، ایران.

3 دانشیار، گروه علوم و صنایع غذایی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

زمینه مطالعاتی: خشک‌کردن یک عملیات واحد با مصرف انرژی زیاد در نگهداری مواد غذایی است که رطوبت اضافی را حذف و ماندگاری محصولات غذایی را افزایش می‌دهد. یکی از روش‌های خشک‌کردن مواد غذایی، استفاده از خشک‌کن فروسرخ است. با استفاده از این روش، سرعت خشک شدن بهبود می‌یابد، غذاها سریع‌تر خشک می‌شوند، مصرف انرژی کاهش می‌یابد و کیفیت محصول تا حد زیادی حفظ می‌شود. هدف: هدف از این پژوهش استفاده از خشک‌کن فروسرخ جهت افزایش سرعت فرآیند خشک‏کردن برش‌های سیر، بررسی سرعت خروج رطوبت از نمونه‌ها و همچنین مدل‌سازی فرآیند خشک شدن به روش شبکه عصبی مصنوعی است. روش کار: در این مطالعه اثر زمان قرارگیری نمونه‌ها در خشک‌کن فروسرخ، فاصله نمونه‌ها از لامپ فروسرخ (در سه سطح 5، 5/7 و 10 سانتی‌متر) و ضخامت نمونه‌ها (در سه سطح 3، 6 و 9 میلی‌متر) بر تغییر محتوای رطوبت برش‌های سیر درون یک خشک‌کن فروسرخ در سه تکرار مورد بررسی قرار گرفت. همچنین، داده‌های آزمایشگاهی به‌دست آمده از فرآیند خشک‌کردن برای آموزش و ارزیابی شبکه عصبی مصنوعی استفاده شد. نتایج: نتایج نشان داد که با کاهش فاصله نمونه‌ها از لامپ فروسرخ و همچنین کاهش ضخامت نمونه‌ها، مقدار رطوبت خارج‌شده از نمونه‌ها افزایش و زمان خشک شدن کاهش می‌یابد. زمان لازم برای رسیدن مقدار رطوبت برش‌های سیر با ضخامت 9 میلی‌متر به حدود 10 درصد در فواصل 5، 5/7 و 10 سانتی‌متر به ترتیب برابر 50، 54 و 64 دقیقه بود. همچنین زمان لازم برای خشک شدن برش‌های سیر با ضخامت‌های 3، 6 و 9 میلی‌متر به ترتیب برابر 28، 33 و 40 دقیقه بود. این فرآیند توسط یک شبکه عصبی مصنوعی با 3 ورودی و 1 خروجی مدل‌سازی شد. نتیجه‌گیری نهایی: بر اساس تحلیل‌های صورت گرفته روی داده‌های آزمایشگاهی، شبکه عصبی مصنوعی پرسپترون با ساختار 1-12-3، با ضریب همبستگی 964/0 و مقدار میانگین مربعات خطای 637/20 مناسب‌ترین شبکه برای تخمین محتوای رطوبت برش‌های سیر هنگام خشک شدن درون خشک‌کن فروسرخ است.

کلیدواژه‌ها


عنوان مقاله [English]

Predicting Moisture Content of Garlic Slices During Infrared Drying Using Artificial Neural Network

نویسندگان [English]

  • Navid Godini 1
  • Ashraf Gohari Ardabili 2
  • Fakhreddin Salehi 3
1 MSc Student, Department of Food Science and Technology, Bahar Faculty of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran.
2 Assistant Professor, Department of Food Science and Technology, Bahar Faculty of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran.
3 Associate Professor, Department of Food Science and Technology, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

Introduction:
Garlic (Allium sativum L.), is one of the most perennial spice crops, which is grown all over the country and especially in plains of India and is used as the spices or condiment throughout the world. Fresh garlic clove has a high moisture content of around 70%, which can be easily spoiled due to microbial contamination also sprouting and rotting are the main causes of losses during storage (Zhou et al. 2017; Malakar et al. 2021). Drying is an energy-intensive unit operation in food preservation, as it removes the excess moisture content and enhances the shelf life of food products (Salehi 2020b). Garlic has found uses in its dried form, as an ingredient of precooked foods and instant convenience foods including sauces, gravies and soups, has led to a sharp increase in the demand of dried garlic (Sharma and Prasad 2006). Infrared radiation (IR) is developed in recent years with the advantages of higher puffing rate, energy saving, and uniform temperature distribution giving a better quality (Salehi 2020b). When exposed to infrared rays, samples absorb the radiation, leading to uniform molecular heating without impacting the temperature of the air in the drying chamber. As a result, drying rates are improved, foods are dried faster, energy consumption is decreased, and product quality is greatly preserved (Doymaz et al. 2015). Artificial neural network (ANN), known as connected machine model, which can simulate the basic process of biological nervous system to deal with external things. It was a computing system, which developed based on modern neuroscience, computer science, biology, and other disciplines, and it can simulate the human brain and nerve tissue (Saffari et al. 2009; Salehi 2020a). The ANN has attracted the attention of scholars in many fields due to its good fault tolerance and excellent nonlinear approximation ability of self-learning and self-organization. The structure of the ANNs model is formed using experimental data under consideration and therefore can represent and predict the data with high accuracy. ANNs has been used for modeling drying kinetics, with high accuracy (Onwude et al. 2016; Satorabi et al. 2021). In this study, the effect of the infrared treatment time, the samples distance from the infrared lamp (at three levels of 5, 7.5 and 10 cm) and the samples thickness (at three levels of 3, 6 and 9 mm) on the change in the moisture content of garlic slices inside an infrared dryer was investigated.
Material and methods:
Slices of garlic (at three levels of 3, 6 and 9 mm) were prepared with the aid of a cutter. The garlic slices were dried in an infrared dryer (250 W infrared radiation lamp (NIR), Noor Lamp Company, Iran). The weight changes of garlic slices was measured by using Lutron GM-300p digital balance (Taiwan, the sensitivity of ±0.01 gr). All measurements were done in triplicate. In this study, the Neurosolution software (release 5, NeuroDimension, Inc., USA) was employed for making the ANN model. The experimental data order was first randomized and then total data were randomly separated into 3 partitions: training (20%), validating (20%), and testing data (60%). The testing data were used for prediction of the trained network performance on unseen data. In the hidden layers and output layer a hyperbolic tangent activation function was used. The Levenberg–Marquardt (LM) optimization method was applied to network training. Also, a sensitivity analysis was done to supply the measure of relative significance between the inputs of the ANN model and to show how the model output changed in response to input changes.
Results and discussion:
The results showed that by reducing the samples distance from the infrared lamp and also reducing the samples thickness, the amount of removed moisture from the samples increases and the drying time decreases. The time required to reach the moisture content of garlic slices with a thickness of 9 mm to about 10% at distances of 5, 7.5, and 10 cm was 50, 54, and 64 minutes, respectively. Also, the time needed to drying of garlic slices with thicknesses of 3, 6, and 9 mm was 28, 33, and 40 minutes, respectively (the distance between the samples and the radiation lamp was 10 cm). This process was modeled by an artificial neural network with 3 inputs (the treatment time by infrared, the samples distance from the infrared lamp and the samples thickness) and 1 output (moisture content). The results of artificial neural network modeling showed that the network with 12 neurons in a hidden layer and using the Hyperbolic tangent activation function can predict the moisture content of garlic slices during drying by infrared dryer (r=0.964). Also, the values of mean squared error (MSE), normalized mean squared error (NMSE) and mean absolute error (MAE) for optimum network were 20.637, 0.070 and 3.494, respectively.
Conclusion:
The use of artificial neural network approach for modeling the drying kinetic and moisture content changes of garlic slices helps in programming and developing smart control systems, which is very useful for automated food processing systems.

کلیدواژه‌ها [English]

  • Artificial neural network
  • Correlation coefficient
  • Drying time
  • Garlic slices
دهقانی‌خیاوی ه، خاکبازحشمتی م، دهقان‌نیا ج و باغبان ح، 1399، کاربرد روش‌های هیبریدی (هوای داغ- مایکروویو- مادون‌قرمز) جهت خشک‌کردن سیب‌زمینی و مطالعه ویژگی‌های کیفی محصول خشک‌شده. نشریه پژوهش‌های صنایع غذایی، 30(2)، 161-143.
رسولی م، 1397، خشک شدن همرفتی سیر (Allium sativum L.): رویکرد شبکه‌های عصبی مصنوعی برای مدل‌سازی فرآیند خشک‌کردن. نشریه پژوهش‌های علوم و صنایع غذایی ایران، 14(3)، 62-52.
صالحی ف و ساترابی م، 1401، مدل‌سازی فرآیند خشک‌کردن برش‌های هلو پوشش‌ داده‌شده با صمغ‌های دانه ریحان و گزانتان با سامانه فروسرخ. نشریه پژوهش‌های صنایع غذایی، 32(3)، 28-17.
قربانی م ع، نقی‌پور ل، کریمی و و فرهودی ر، 1392، آنالیز حساسیت پارامترهای مؤثر بر غلظت ازن با استفاده از شبکه عصبی مصنوعی. سلامت و محیط زیست، ۶ (۱)، ۲۲-۱۱.
کرمی ح، لرستانی ع ن و تحویلیان ر. ۱۴۰۰، تأثیر روش‌های مختلف خشک‌کردن بر سینتیک خشک شدن، مدلسازی ریاضی، کمیت و کیفیت اسانس آویشن. مجله علوم و صنایع غذایی ایران، ۱۸ (۱۱۳)، ۱35-۱46.
کریمی ف، دهقان‌نیا ج، قنبرزاده ب و رفیعی ش، 1391، مدل‌سازی خشک‌کردن لایه‌نازک موز و بهینه‌سازی فرآیند توسط شبکه عصبی مصنوعی. نشریه پژوهش‌های صنایع غذایی، 22(3)، 360-347.
نعلبندی ح و سیدلو س ص، 1398، اثر تغییر دمای خشک‌کردن همرفتی بر کاهش مصرف انرژی و حفظ کیفیت ورقه‌های سیر. نشریه پژوهش‌های صنایع غذایی، 29(4)، 200-185.
نعمت‌پور ملک‌آباد ح، شیخ داودی م ج، خراسانی‌فردوانی ا و ذکی‌دیزجی ح، 1394، پیش‌بینی محتوای رطوبتی پیاز خوراکی در طی فرآیند خشک‌کردن با استفاده از شبکه عصبی مصنوعی. مهندسی زراعی، 38(2)، 161-145.
Alolga R N, Osae R, Essilfie G, Saalia F K, Akaba S and Chikari F, 2021. Sonication, osmosonication and vacuum-assisted osmosonication pretreatment of Ghanaian garlic slices: Effect on physicochemical properties and quality characteristics, Food Chemistry 343: 128535.
Amini G, Salehi F and Rasouli M, 2021. Drying kinetics of basil seed mucilage in an infrared dryer: Application of GA-ANN and ANFIS for the prediction of drying time and moisture ratio. Journal of Food Processing and Preservation 45(3): e15258.
Bayat F, 2006. Effect of different drying conditions on quality of dried garlic slices, Journal of Agricultural Engineering Research 7: 31-46.
Doymaz I, Kipcak A S and Piskin S, 2015. Characteristics of thin-layer infrared drying of green bean. Czech Journal of Food Sciences 33(1): 83-90.
Hosseini Ghaboos SH, 2016. Production of pumpkin powder with vacuum-infrared system and its use in the formulation of spong cake, Food science and technology. Islamic Azad University, Science and Research Brach, Tehran, p. 122.
Malakar S, Arora V K and Nema P K, 2021. Design and performance evaluation of an evacuated tube solar dryer for drying garlic clove. Renewable Energy 168: 568-580.
Onwude D I, Hashim N, Janius R B, Nawi N and Abdan K, 2016. Modelling the convective drying process of pumpkin (Cucurbita moschata) using an artificial neural network. International food research journal 23: S237.
Rasouli M and Seiiedlou S, 2012. A study of the shrinkage changes and mathematical modeling of garlic (Allium sativum L.) during convective drying. Journal of Agricultural Machinery Engineering 2(1): 67-73.
Saffari M, Yasrebi J, Sarikhani F, Gazni R, Moazallahi M, Fathi H and Emadi M, 2009. Evaluation of Artificial Neural Network models for prediction of spatial variability of some soil chemical properties. Research Journal of Biological Sciences 4(7): 815-820.
Salehi F, 2020a. Recent advances in the modeling and predicting quality parameters of fruits and vegetables during postharvest storage: A review. International Journal of Fruit Science 20(3): 506-520.
Salehi F, 2020b. Recent applications and potential of infrared dryer systems for drying various agricultural products: A review. International Journal of Fruit Science 20(3): 586-602.
Satorabi M, Salehi F and Rasouli M, 2021. The influence of xanthan and balangu seed gums coats on the kinetics of infrared drying of apricot slices: GA-ANN and ANFIS Modeling. International Journal of Fruit Science 21(1): 468-480.
Sharma G P and Prasad S 2006. Optimization of process parameters for microwave drying of garlic cloves. Journal of Food Engineering 75(4): 441-446.
Yusefi A, Dilmaghanian S, Ziaforoughi A and Moezzi M, 2019. Study on infrared drying kinetics of quince slices and modelling of drying process using genetic algorithm-artificial neural networks (GA-ANNs). Innovative Food Technologies 6(2): 175-186.
Zhou L, Guo X, Bi J, Yi J, Chen Q, Wu X and Zhou M, 2017. Drying of garlic slices (Allium sativum L.) and its effect on thiosulfinates, total phenolic compounds and antioxidant activity during infrared drying. Journal of Food Processing and Preservation 41(1): e12734.