بررسی ویژگی‌های پروبیوتیکی و ضدمیکروبی Levilactobacillus brevis NKN55 جداسازی شده از ماست محلی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 1 دانشیار، گروه علوم و مهندسی صنایع غذایی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

2 دانشگاه علوم کشاورزی و منابع طبیعی خوزستان

3 3دانشجوی دکتری، گروه علوم و صنایع غذایی، دانشکده علوم دامی و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی خوزستان، ملاثانی، ایران

10.22034/fr.2024.61357.1932

چکیده

زمینه مطالعاتی: ارزیابی ویژگی‌های پروبیوتیکی و ضدمیکروبی سویه Levilactobacillus brevi NKN55 جداسازی شده از ماست محلی تشان (بهبهان). هدف: این مطالعه به منظور بررسی پتانسیل عملکردی و فعالیت ضدمیکروبی سویه Lev. brevisNKN55 جداسازی شده از ماست محلی تشان (بهبهان) انجام شد، تا در صورت دارا بودن ویژگی‌های عملکردی و ضدمیکروبی مطلوب، در تولید محصولات لبنی به‌عنوان کشت مکمل و یا به‌عنوان نگهدارنده طبیعی مورد استفاده قرار گیرند. روش کار: ابتدا سویه، از نظر ویژگی‌های پروبیوتیکی از قبیل مقاومت به اسید ( pH5/2، 5/3 و 5/4)، خاصیت هیدروفوبیسیتی، مقاوت به صفرا (3/0، 5/0و7/0) و جذب کلسترول مورد ارزیابی قرار گرفت. سپس تولید آمین بیوژنیک، عدم فعالیت همولیتیک و DNase نیز مورد بررسی قرار گرفت. ظرفیت آنتی‌اکسیدانی سویه جداسازی شده (DPPH و (ABTS تعیین گردید و ویژگی ضدمیکروبی (روش دیسک دیفیوژن و نفوذ در چاهک) سویه، در مقابل 6 پاتوژن شاخص (Escherichia coli، Staphylococcus aureus، Klebsiella aerogenes، monocytogenes Listeria ، Salmonella Typhimurium وBacillus cereus) بررسی شد. پتاسیل چسبندگی به سلول 2-caco، ضدچسبندگی، تجمیع خودکار و انباشتگی نیز تعیین گردید. نتایج: بیشترین میزان کاهش سویه مربوط به ماندگاری 3 ساعت در 5/2 pH بود. با کاهش pH از4 به 2، کاهش قابل توجهی در تعداد سلول‌های زنده مشاهده شد و از 8/7 به 90/6 Log CFU/mL کاهش یافت. Lev. brevi NKN55 در غلظت‌های مختلف نمک‌های صفراوی مقاومت خوبی از خود نشان داد. در این پژوهش رشد سویه مورد بررسی با افزایش درصد نمک صفراوی، در 7/0% متوقف شد. خاصیت هیدروفوبی، 40/0±4/58 درصد بود. تولید آمین بیوژنیک، DNase، و فعالیت همولیتیک منفی بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of probiotic and antimicrobial properties of Levilactobacillus brevis NKN55 isolated from local yogurt

نویسندگان [English]

  • Behrooz Alizadeh Behbahani 1
  • MOHAMMAD HOJJATI 2
  • Bahareh Goodarzi Shamsabadi 3
1 Associate Professor, Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.
2 Agricultural Sciences and Natural Resources University of Khuzestan
3 3PhD. student, Department of Food Science and Technology, Faculty of Animal Science and Food Technology, Agricultural Sciences and Natural Resources University of Khuzestan, Mollasani, Iran.
چکیده [English]

Introduction: Probiotics are living microorganisms that, when consumed in food, provide health benefits to the host. In the past, probiotics were used as substances consumed by microorganisms that stimulate the growth of other microorganisms. The composition of probiotics is defined as microbial supplements that create a positive effect by modifying the composition of the microbial flora (Joyande et al. 2021). Among the effects of probiotics on human health, we can mention the improvement of milk digestibility in people with lactose intolerance, the enhancement of the immune system through antimicrobial peptide production, the synthesis of group B vitamins, the boost in the body's immunity, and the prevention of cell carcinogenesis (Fallah et al. 2019). Due to the conversion of fermentable sugars into organic acids, ethanol, and other metabolites with antimicrobial potential, these microorganisms create unfavorable conditions for the growth of potentially pathogenic microorganisms or agents of spoilage (Alizadeh Behbahani & Noshad. 2021). Native strains of lactic acid bacteria have found special importance in the dairy industry because these strains, in addition to being compatible with the conditions of the region, possess a unique ability to produce the desired taste and aroma in various types of fermented products. Additionally, these strains exhibit characteristics such as inherent resistance to destructive phages and antimicrobial effects (Rokhtabnak et al. 2015). The aim of this research was to investigate the functional potential and antimicrobial activity of the Levilactobacillus brevisNKN55 strain isolated from local yogurt in Tashan (Behbahan). If it exhibits desirable functional and antimicrobial properties, it can be utilized in the production of dairy products either as a complementary culture or as a natural preservative.

Materials and Methods: Firstly, the strain was isolated and identified using molecular methods. Subsequently, the strain was evaluated for probiotic properties such as acid resistance (pH 2.5, 3.5, and 4.5), hydrophobicity, and bile resistance (0.3, 0.5, and 0.7). Cholesterol absorption was also assessed. Additionally, the strain underwent evaluation for biogenic amine production, hemolytic and DNase properties. The antioxidant property of the isolated strain (measured using DPPH and ABTS assays) was determined, and its antimicrobial activity against 6 key pathogens (Escherichia coli, Bacillus cereus, Salmonella typhimurium, Klebsiella aerogenes, Staphylococcus aureus, and Listeria monocytogenes) was investigated using disc diffusion and agar well diffusion methods. Furthermore, adhesion potential to Caco-2 cells, anti-adhesion properties, auto-aggregation capacity, and co-aggregation of the strain were also evaluated.
Results and discussion: The maximum reduction in strain viability is associated with a shelf life of 3 hours at pH 2.5. As the pH decreased from 4 to 2, a significant decrease in the number of viable cells was observed, dropping from 7.8 to 6.90 Log CFU/mL. In this study, the growth of the strain decreased by 0.7% with an increase in bile salt percentage. The hydrophobicity of the strain was 58.4±0.40%. For the investigated strain, DNase, biogenic amine production, and hemolytic activity were negative. The cholesterol absorption rate was 10.39, while DPPH and ABTS free radical capacity were 33.46 and 38.5, respectively. The auto-aggregation potential was 33.8, and Co-aggregation was 21.45. Adhesion potential to Caco-2 cell was 10.50, and anti-adhesion potential against K. aerogenes was 38.90 in competition, 31.20 in ability, and 19.8 in displacement. One of the important characteristics of lactic acid bacteria, crucial in their role in the food industry, is resistance to exposure to acidic conditions in products such as yogurt or buttermilk. For this purpose, the survival of these bacteria was tested at pH 2.5, 3.5, and 4.5. The results showed that the Lev. brevisNKN55 strain has a favorable shelf life under the investigated conditions.

To produce beneficial effects in the body, probiotics must be able to grow in the stomach and intestines and have the ability to live there. For this purpose, they must have the necessary resistance to face hydrochloric acid in the stomach and bile salts in the intestine (Alizadeh Behbahani et al. 2020). The results showed that Lev. brevis NKN55 has good resistance to different concentrations of bile salts. In this study, the growth of the tested strain was inhibited by 0.7% with an increase in the percentage of bile salt. However, the growth rate depends on the concentration of bile salts. These results are similar to other studies that have shown lactobacilli can survive in high bile levels. Surface hydrophobicity can be used as a primary way to identify probiotic bacteria with adhesion properties and suitable characteristics for commercial purposes (Vasechi et al. 2020). The presence of hydrophobic molecules on the cell surface, such as surface proteins, cell wall proteins, cytoplasmic membrane proteins, and lipids, increases the cell's hydrophobicity. There is always concern about the commercial use of these bacteria because it is possible to transfer this gene to pathogenic bacteria and create resistance against them. The significant sensitivity of the isolated strain to multiple antibiotics indicates that this strain may not possess genes that cause antibiotic resistance. One critical aspect of probiotic bacteria that should be considered during evaluation is their antibacterial effect, attributed to metabolites such as organic acids, hydrogen peroxide, diacetyl, ethanol, phenols, and protein compounds that inhibit growth (Barzegar et al. 2020). The most common antimicrobial compounds reported to be produced by probiotic bacteria include bacteriocins, hydrogen peroxide, and organic acids (especially lactic and acetic acids). Auto-aggregation is directly related to the adhesion potential of probiotic bacteria, while aggregation has a close interaction with pathogens (Patel et al., 2011). The auto-aggregation property helps bacteria adhere to intestinal cells and mucosal surfaces. Cell aggregation may enable bacteria to form a barrier that prevents colonization and biofilm formation by pathogenic bacteria. The ability of bacterial cells to attach to intestinal mucosa is called adhesion (Jena et al. 2013). In case of damage to the epithelial tissue, the probability of bacterial cell adhesion decreases. Probiotic bacteria are used to treat damage to the digestive system and replace its lost flora. By correcting the microbial balance inside the intestine, damaged tissue is improved, and the ability of microorganisms to bind to the surface of intestinal cells increases (Fontana et al., 2013).

Conclusion: The process of collecting and identifying native strains from fermentation products in any part of the country can cause Preservation of microbial and genetic reserves and provides useful information for scientific and commercial applications, especially in the field of dairy industries and the discussion of probiotics and functional foods. In this study, Lev. brevisNKN55 strain isolated from Behbahan yogurt was evaluated for its probiotic and antimicrobial potential. The results showed that this strain has a high ability to inhibit pathogenic bacteria. This bacterium tolerates different concentrations of bile salts well. It also has the ability to survive in acidic conditions. This bacterium tolerates different concentrations of bile salts well. It also has the ability to survive in acidic conditions. The studied strain was sensitive to common antibiotics and showed acceptable adhesion, hydrophobicity, auto-aggregation and accumulation. According to the results, it is suggested to use this strain as a probiotic supplement in fermentation cultures or as a co-culture in the production process of fermented food products after conducting more confirmatory tests. The results showed that this strain has a high ability to inhibit pathogenic bacteria. This bacterium tolerates different concentrations of bile salts well. It also has the ability to survive in acidic conditions. This bacterium tolerates different concentrations of bile salts well. It also has the ability to survive in acidic conditions. The studied strain was sensitive to common antibiotics and showed acceptable adhesion, hydrophobicity, auto-aggregation and accumulation. According to the results, it is suggested to use this strain as a probiotic supplement in fermentation cultures or as a co-culture in the production process of fermented food products after conducting more confirmatory tests. The results showed that this strain has a high ability to inhibit pathogenic bacteria. This bacterium tolerates different concentrations of bile salts well. It also has the ability to survive in acidic conditions. This bacterium tolerates different concentrations of bile salts well. It also has the ability to survive in acidic conditions. The studied strain was sensitive to common antibiotics and showed acceptable adhesion, hydrophobicity, auto-aggregation and accumulation. According to the results, it is suggested to use this strain as a probiotic supplement in fermentation cultures or as a co-culture in the production process of fermented food products after conducting more confirmatory tests.The results showed that this strain has a high ability to inhibit pathogenic bacteria. This bacterium tolerates different concentrations of bile salts well. It also has the ability to survive in acidic conditions. This bacterium tolerates different concentrations of bile salts well. It also has the ability to survive in acidic conditions. The studied strain was sensitive to common antibiotics and showed acceptable adhesion, hydrophobicity, auto-aggregation and accumulation. According to the results, it is suggested to use this strain as a probiotic supplement in fermentation cultures or as a co-culture in the production process of fermented food products after conducting more confirmatory tests.

کلیدواژه‌ها [English]

  • Probiotic
  • Levilactobacillus brevis
  • Antioxidant
  • Antibacterial
  • Anti-adhesion
توکلی، م. حمیدی اصفهانی، ز. حجازی، م.ا. عزیزی، م.ح. عباسی، س. 1397. توانایی پروبیوتیکی سویه‌های الکتوباسیلوس جدا شده از پنیر محلی مازندران، مجله علوم تغذیه و صنایع غذایی ایران، 11(4 :)68-86
جوینده ح، علیزاده بهبهانی ب، نوشاد م،  1400. بررسی اثر اینولین بر زنده مانی لاکتوباسیلوس فرمنتوم17-4 در بستنی عملگر و ارزیابی ویژگی‌های میکروبی و فیزیکوشیمیایی آن، مجله علوم و صنایع غذایی ایران. شماره 113. دوره 18،100-91
 حاجی قاسمی م ، مژگانی ن، 1394. شناسایی و بررسی خواص پروبیوتیکی باکتر‌ های اسید لاکتیک بومی بر اساس ویژگی‌های فنوتیپی و ژنوتیپی، مجله میکرو بشناسی پزشکی ایران سال 9 شماره 4
حجتی م، علیزاده بهبهانی ب، فلاح ف،1399. بررسی ویژگی‌های تکنولوژیکی و ضد میکروبی سویه لاکتوباسیلوس برویس 104gp جدا شده از پنیر خیکی، فصلنامه میکروبیولوژی کاربردی در صنایع غذایی. دوره 7، شماره3، 26-14.
رامشگر م ، قمی مرزدشتی م ر،  حسینی فرد م ، هاشمی کروئی م، طبری پور س ر،1400. تاثیر لاکتوباسیلوس پلانتاروم و برویس جدا شده از دستگاه گوارش سیاه ماهی (Capoeta.razii) و تاثیر آن بر شاخص‌های رشد و ایمنی ماهی کپور معمولی (Cyprinus carpio ) در مقایسه با پروبیوتیک پریمالاک، فصلنامه علمی پژوهشی فیزیولوژی و تکوین جانوری شماره ٥٣، جلد ١٤ شماره ٢ ، ،صفحه ٦٣تا ٧6.
شهرام پور د، خمیری م، رضوی س.ع.، کشیری م. 1397. بررسی تأثیر تنوع نژادی سویه‌های لاکتوباسیلوس پلانتاروم جدا شده از مواد غذایی مختلف، فعالیت ضد میکروبی، آنتی اکسیدانی و تجمعی آن‌ها، مجله علوم تغذیه و صنایع غذایی ایران سال چهاردهم، شماره 2، صفحات 39-53.
علیزاده بهبهانی ب، نوشاد م، جوینده ح، 1399. بررسی ویژگی‌های عملکردی باکتری‌های لاکتوباسیلوس کازئیCE 28.26 و لاکتوباسیلوس اسیدوفیلوس BCRC10695 جدا شده از ماست محلی شهرستان بهبهان و تعیین فعالیت  ضدمیکروبی آن‌ها علیه باکتری‌های پاتوژن شاخص غذایی، فصلنامه میکروبیولوژِی کاربردی در صنایع غذایی. دوره 7، شماره1، 16-1.
علیزاده بهبهانی ب، و نوشاد م. (1400). جداسازی و شناسایی سویه‌های لاکتوباسیلوس از پنیر محلی بهبهان و بررسی خواص فن‌آوری و ضد میکروبی آن‌ها در برابر عوامل بیماری‌زای غذایی، مجله علوم تغذیه و صنایع غذایی ایران، 16(1)، 133-142.
عیسوند حیدری ا، جوینده ح، حجتی م ، علیزاده بهبهانی ب، نوشاد م، 1400. بررسی خواص ضدمیکروبی و قابلیت زندهمانی Lactobacillus plantarum LZ95 در شرایط اسیدی و صفراوی، نشریه پژوهش‌های علوم و صنایع غذایی ایران جلد 17 ،شماره 4 ، صفحه 541-533.
فلاح ف، مرتضوی س ع، طباطبایی یزدی ف، 1398. بررسی خواص پروبیوتیکی باکتری لاکتوباسیلوس برویس سویه 1PMLبر پایه توانایی چسبندگی آن به سلول‌های اپیتلیال روده، فصلنامه میکروبیولوژی کاربردی در صنایع غذایی دوره 5 شماره 1،صفحات 53-41
مومن زاده س، جوینده ح، علیزاده بهبهانی ب، برزگر ح.1400. ارزیابی خواص پروبیوتیکی و ضد باکتریایی Lactobacillus fermentum SL163. ، مجله تحقیقات علوم و صنایع غذایی ایران. جلد 17، شماره 2،ص. 233- 242.
نوری، ص. ناظری، س. حسینی، پ. 1397. جداسازی و شناسایی بیوشیمیایی و مولکولی باکتری لاکتوباسیلوس پلانتروم از ریزوسفر ریشه برنج لنجان، فصلنامه علمی-پژوهشی زیست شناسی میکروارگانیسم‌ها. 9(29 :)91-91
نوشاد م، علیزاده بهبهانی ب، حجتی م.2021. بررسی ویژگی‌های پروبیوتیکی و فنی باکتری‌های اسید لاکتیک جدا شده از دوغ بومی بهبهان، مجله تحقیقات صنایع غذایی. دوره 31، شماره 4.2021.
واسچی ن، ایرانمنش م ، حاج قاسمی م، کریمی ترشیزی م ا، مژگانی ن، 1399. اندازه گیری میزان آبگریزی، چسبندگی و کلونیزاسیون لاکتوباسیلوس‌های پروبیوتیکی در شرایط آزمایشگاهی، نشریه میکروبیولوژی دامپزشکی/ دوره شانزدهم، شماره اول31-21
Aarti C, Khusro A, Varghese R, Arasu MV, Agastian P, Al-Dhabi NA, et al. In vitro studies on probiotic and antioxidantproperties of Lactobacillus brevis strain LAP2 isolated from Hentak, a fermented fish product of North-East India. LWT.2017;86:438-46.
Abushelaibi A, Al-Mahadin S, El-Tarabily K, Shah N. P & Ayyash M. (2017). Characterization of potential probiotic lactic acid bacteria isolated from camel milk. LWT-Food Science and Technology 79, 316–325. https://doi.org/10.1016/j.lwt.2017.01.04.
Alizadeh Behbahani B, Jooyandeh H, Hojjati M, Ghodsi Sheikhjan M.2023. Evaluation of probiotic, safety, and anti-pathogenic properties of Levilactobacillus brevis HL6, and its potential application as bio-preservatives in peach juice. Food Science and Technology 191 (2024) 11560.
Alizadeh Behbahani B, Noshad M, Falah F. 2019. Inhibition of Escherichia coli adhesion to human intestinal Caco2 cells by probiotic candidate Lactobacillus plantarum strain L15. Microbial Pathogenesis 136: 1-7.
Alizadeh Behbahani, B., Jooyandeh, H., Falah, F., & Vasiee, A. (2020). Gamma-aminobutyric acid production by Lactobacillus brevis A3: Optimization of production, antioxidant potential, cell toxicity, and anti-microbial activity. Food Science & Nutrition, 8(10), 5330-5339. doi:https://doi.org/10.1002/fsn3.1838
Alizadeh Behbahani, B., Jooyandeh, H., Vasiee, A., & Zeraatpisheh, F. (2023). Evaluation of anti-yeast metabolites produced by Lactobacillus strains and their potential application as bio-preservatives in traditional yogurt drink. LWT, 188, 115428.
Ayyanna R, Ankaiah D, Arul V. Anti-inflammatory and antioxidant properties of probiotic bacterium Lactobacillus mucosae AN1 and Lactobacillus fermentum SNR1 in Wistaralbino rats. Frontiers in microbiology 2018; 9:3063.
Barzegar H, Alizadeh Behbahani B, Falah F.2021. Safety, probiotic properties, antimicrobial activity, and technological performance of Lactobacillus strains isolated from Iranian raw milk cheeses. Food Science & Nutrition published 2021; 9:4094–4107.
Boricha A. A., Shekh S. L, Pithva S. P, Ambalam P. S & Vyas B. R. M. (2019). In vitro evaluation of probiotic properties of Lactobacillus species of food and human origin. LWT-Food Science and Technology 106, 201–208. https://doi.org/10.1016/j.lwt.2019.02.021
Brink B, Damink C, Joosten H. M. L. J. & Huis in t’Veld, J. H. J. (1990). Occurrence and formation of biologically active amines in foods. International Journal of Food Microbiology 11, 73–84.
Fadare O, Anyadike C, Momoh A & Bello T. (2023). Antimicrobial properties, safety, and probiotic attributes of lactic acid bacteria isolated from Sauerkraut. African Journal of Clinical and Experimental Microbiology 24, 61–72.
Falah F, Vasiee A, Alizadeh Behbahani B, Tabatabaee Yazdi F, Mortazavi SA. Optimization of gamma‐aminobutyric acid production by Lactobacillus brevis PML1 in dairy sludge‐based culture medium through response surface methodology. Food science & nutrition. 2021b Jun;9(6):3317-26.
Falah F, Vasiee A, Alizadeh Behbahani B, Yazdi F. T, Moradi S, Mortazavi S. A & Roshanak S. (2019). Evaluation of adherence and anti-infective properties of Optimization of the new formulation of ice cream with native Iranian seed gums (Lepidium perfoliatum and Lepidiumsativum) using response surface methodology (RSM). Journal of Food Science and Technology 54(1), 196-208.
Falah F, Vasiee A, Yazdi FT, Behbahani BA. Preparation and functional properties of synbiotic yogurt fermented with Lactobacillus brevis pml1 derived from a fermented cereal-dairy product. BioMed research international. 2021c Aug 12;2021.
Falah F, Zareie Z, Vasiee A, Tabatabaee Yazdi F, Mortazavi SA, Alizadeh Behbahani B. Production of synbiotic ice-creams with Lactobacillus brevis PML1 and inulin: functional characteristics, probiotic viability, and sensory properties. Journal of Food Measurement and Characterization. 2021a Dec;15(6):5537-46.
Fontana L, Bermudez-Brito M, Plaza-Diaz J, Munoz-Quezada S, Gil A. Sources, isolation, characterisation and evaluation of probiotics. British journal of nutrition. 2013 Jan;109(S2): S35-50.
Fossi B. T, Ekabe D. E, Toukam L. L, Tatsilong Pambou H. O, Gagneux-Brunon A, Nkenfou Nguefeu C et al. (2022). Probiotic lactic acid bacteria isolated from traditional cameroonian palm wine and corn beer exhibiting cholesterol lowering activity. Heliyon, 8, Article e11708
Hamed E. Isolation, characterization and identification of lactic acid bacteria as probiotic. Annals of Agricultural Science Moshtohor 2021, 59, 311–322
Jena P. K, Trivedi D, Thakore K, Chaudhary H, Giri S. S & Seshadri S. (2013). Isolation and characterization of probiotic properties of lactobacilli isolated from rat fecal microbiota. Microbiology and Immunology 57(6), 407–416.https://doi.org/10.1111/1348-0421.12054.
Kardooni Z, Alizadeh Behbahani B, Jooyandeh H, Noshad M. Assessing Protection Mechanisms against Escherichia coli by Analyzing Auto-and Co-Aggregation, Adhesion Ability, Antagonistic Activity and Safety Characteristics of Potentially Probiotic Lactobacillus acidophilus B103. Nutrition and Food Sciences Research 2023; 10 (1) :11-21
Kardooni, Z., Alizadeh Behbahani, B., Jooyandeh, H., & Noshad, M. (2023). Probiotic viability, physicochemical, and sensory properties of probiotic orange juice. Journal of Food Measurement and Characterization, 17(2), 1817-1822.
Kelly M. T, Blaise A & Larroque, M. (2010). Rapid automated high performance liquid chromatography method for simultaneous determination of amino acids and biogenic amines in wine, fruit and honey. Journal of Chromatography 1217, 7385–7392.
Kim S, Lee J.Y, Jeong Y, & Kang Ch. 2022. "Antioxidant Activity and Probiotic Properties of Lactic Acid Bacteria" Fermentation 8, no. 1: 29. https://doi.org/10.3390/fermentation8010029
Kocabay, S. (2023). Evaluation of probiotic properties of Levilactobacillus brevis isolated from hawthorn vinegar. Archives of Microbiology 205, 258
Lin M.Y, Yen C.L. Antioxidative ability of lactic acid bacteria. Journal of Agricultural and Food Chemistry 1999, 47, 1460–1466
Milheiro J, Ferreiraa L C, Filipe-Ribeiroa L, Cosmeb F, Nunes F.N.2019. A simple dispersive solid phase extraction clean-up/concentration method for selective and sensitive quantification of biogenic amines in wines using benzoyl chloride derivatisation. Food Chemistry 274 (2019) 110–117.
Montoro BP, Benomar N, Gómez NC, Ennahar S, Horvatovich P, Knapp CW, et al. Proteomic analysis of Lactobacillus pentosus for the identification of potential markers involved in acid resistance and their influence on other probiotic features. Food Microbiology 2018; 72:31-8
Mulaw G, Sisay Tessema T, Muleta D & Tesfaye A. (2019). In vitro evaluation of probiotic properties of lactic acid bacteria isolated from some traditionally fermented Ethiopian food products. International Journal of Microbiology 7179514. https://doi.org/10.1155/2019/7179514
 Munir A,  Javed  G.A,  Javed S,  Arshad N.2022. Levilactobacillus brevis from carnivores can ameliorate hypercholesterolemia: In vitro and in vivo mechanistic evidence. Journal of Applied Microbiology Volume 133, Issue 3, 1 September 2022, Pages 1725–1742, https://doi.org/10.1111/jam.15678.
 Mushtaq M , Arshad N,  Hameed M,  Munir  A,  Javed  G.A and  Rehman A.2023. Lead biosorption efficiency of Levilactobacillus brevis MZ384011 and Levilactobacillus brevis MW362779: A response surface based approach. Saudi Journal of Biological Sciences Volume 30, Issue 2, 103547.
Olatunde O. O, Obadina A. O, Omemu A. M, Oyewole O. B, Olugbile A & Olukomaiya O. O. (2018). Screening and molecular identification of potential probiotic lactic acid bacteria in effluents generated during ogi production. Annals of Microbiology, 68(7), 433–443. https://doi.org/10.1007/s1321 3-018-1348-9.
Ouwehand AC, Kirjavainen PV, Grönlund MM, Isolauri E, Salminen SJ. Adhesion of probiotic micro-organisms to intestinal mucus. International Dairy Journal. 1999 Sep 1;9(9):623-30.
Patel J, Sharma M & Ravishakar S. (2011). Effect of curli expression and hydrophobicity of Escherichia coli O157: H7 on attachment to fresh produce surfaces. Journal of Applied Microbiology 110(3), 737–745.https://doi.org/10.1111/j.1365-2672.2010.04933.
Pieniz S andreazza R, Anghinoni T, Camargo F, Brandelli A. Probiotic potential, antimicrobial and antioxidant activities of Enterococcus durans strain LAB18s. Food Control.2014;37:251-6.
Rokhtabnak A, Khaleghi M, Sasan H.A. 2015. Isolation and identification of Lactobacillus bacteria with probiotic potential from traditional dairy in Kerman. Iranian Journal of Medical Microbiology Volume 10, Number 1.
Saboktakin‑Rizi M, Alizadeh Behbahani B, Hojjati, M, Noshad M. 2021. Identifcation of Lactobacillus plantarum TW29‑1 isolated from Iranian fermented cereal‑dairy product (Yellow Zabol Kashk): probiotic characteristics, antimicrobial activity and safety evaluation. Journal of Food Measurement and Characterization (2021) 15:2615–2624.
Shangpliang H. N. J & Tamang, J. P. (2023). Genome analysis of potential probiotic Levilactobacillus brevis AcCh91 isolated from Indian home-made fermented milk product (Chhurpi). Probiotics and Antimicrobial Proteins. https://doi.org/10.1007.
Shehata M, El Sohaimy S, El-Sahn, M. A & Youssef M. (2016). Screening of isolated potential probiotic lactic acid bacteria for cholesterol lowering property and bile salt hydrolase activity. Annals of Agricultural Sciences, 61(1), 65–75. https://doi.org/10.1016/j.aoas.2016.03.001
Tang W, Li C, He Z, Pan F, Pan S, Wang Y.2018. Probiotic properties and cellular antioxidant activity of Lactobacillus plantarum MA2 isolated from Tibetan Kefir grains. Probiotics Antimicrob. Proteins 2018, 10, 523–533
Tuo Y, Song X, Song Y, Liu W, Tang Y, Gao Y, et al. Screening probiotics from   Lactobacillus strains according to their abilities to inhibit pathogen adhesion and induction of pro-inflammatory cytokine IL-8. Journal of dairy science. 2018; 101:4822-9.
Vasiee A, Alizadeh Behbahani B, Yazdi F, Mortazavi SA, Noorbakhsh H. Diversity and probiotic potential of lactic acid bacteria isolated from horreh, a traditional Iranian fermented food. Probiotics and antimicrobial proteins. 2018 Jun 1;10(2):258-68.
Vasiee A, Falah F, Alizadeh Behbahani B, Tabatabaee-yazdi F.2020. Probiotic characterization of Pediococcus strains isolated from Iranian cereal-dairy fermented product: Interaction with pathogenic bacteria and the enteric cell line Caco-2. Journal of Bioscience and Bioengineering. Volume 130, Issue 5, Pages 471-479.
Vasiee A, Falah F, and Mortazavi S.A.2022. Evaluation of probiotic potential of autochthonous lactobacilli strains isolated from Zabuli yellow kashk, an Iranian dairy product. Journal of Applied Microbiology, 2022;133:3201–3214.
Vasiee AR, Mortazavi A, Tabatabaei-Yazdi F, & Edalatian MR. 2018. Detection, identification and phylogenetic analysis of lactic acid bacteria isolated from tarkhineh, Iranian fermented cereal product, by amplifying the 16S rRNA gene with universal primers and differentiation using rep-PCR.
Vougiouklaki D, Tsironi T, Papaparaskevas J, Halvatsiotis P & Houhoula D. (2022). Characterization of lacticaseibacillus rhamnosus, Levilactobacillus brevis and lactiplantibacillus plantarum metabolites and evaluation of their antimicrobial activity against food pathogens. Applied Sciences, 12, 660.
Zibaei-Rad A, Rahmati-Joneidabad M, Alizadeh Behbahani B & Taki M. (2023). Assessing the protection mechanisms on Enterobacter aerogenes ATCC 13048 by potentially probiotic strain Lacticaseibacillus casei XN18: An experimental and modeling study. Microbial Pathogenesis, 181, Article 106177
Zibaei-Rad, A., Rahmati-Joneidabad, M., Alizadeh Behbahani, B., & Taki, M. (2024). Probiotic-loaded seed mucilage-based edible coatings for fresh pistachio fruit preservation: an experimental and modeling study. Scientific Reports, 14(1), 509.