Abd El-Maksoud, A. A., Abd El-Ghany, I. H., El-Beltagi, H. S., Anankanbil, S., Banerjee, C., Petersen, S. V., ... & Guo, Z. 2018. Adding functionality to milk-based protein: Preparation, and physico-chemical characterization of β-lactoglobulin-phenolic conjugates. Food Chemistry, 241: 281-289.
Aewsiri, T., Benjakul, S., Visessanguan, W., Wierenga, P. A., & Gruppen, H. 2013. Emulsifying property and antioxidative activity of cuttlefish skin gelatin modified with oxidized linoleic acid and oxidized tannic acid. Food and Bioprocess Technology, 6: 870-881.
Ayodele, J. A., Ayodeji, A. O., Oluwafemi, T. O., Sunday, A. O., & Scholarstical, A. 2015. Inhibitory effect of tannic acid and its derivative (gallic acid) against cisplatin–induced thiobarbituric acid reactive substances (TBARS) production in rat kidney–in vitro. International Journal of Advanced Research, 3(1): 116-126.
Czubinski, J., & Dwiecki, K. 2017. A review of methods used for investigation of protein–phenolic compound interactions. International Journal of Food Science and Technology, 52(3): 573-585.
Gu, L., Su, Y., Zhang, M., Chang, C., Li, J., McClements, D. J., & Yang, Y. 2017. Protection of β-carotene from chemical degradation in emulsion-based delivery systems using antioxidant interfacial complexes: Catechin-egg white protein conjugates. Food Research International, 96: 84-93.
Guo, Y., Bao, Y. H., Sun, K. F., Chang, C., & Liu, W. F. 2021. Effects of covalent interactions and gel characteristics on soy protein-tannic acid conjugates prepared under alkaline conditions. Food Hydrocolloids, 112: 106-293.
Gyamfi, M. A., Yonamine, M., & Aniya, Y. 1999. Free-radical scavenging action of medicinal herbs from Ghana: Thonningia sanguinea on experimentally-induced liver injuries. General Pharmacology: The Vascular System, 32(6): 661-667.
Hager, A. S., Vallons, K. J., & Arendt, E. K. 2012. Influence of gallic acid and tannic acid on the mechanical and barrier properties of wheat gluten films. Journal of agricultural and food chemistry, 60(24): 6157-6163.
Heleno, S. A., Martins, A., Queiroz, M. J. R., & Ferreira, I. C. 2015. Bioactivity of phenolic acids: Metabolites versus parent compounds: A review. Food chemistry, 173: 501-513.
Jiang, B., Wang, X., Wang, L., Wu, S., Li, D., Liu, C., & Feng, Z. 2019. Study on the preparation and conjugation mechanism of the phosvitin-gallic acid complex with an antioxidant and emulsifying capability. Polymers, 11(9): 14-64.
Jiang, L., Liu, Y., Li, L., Qi, B., Ju, M., Xu, Y., ... & Sui, X. 2019. Covalent conjugates of anthocyanins to soy protein: Unravelling their structure features and in vitro gastrointestinal digestion fate. Food Research International, 120: 603-609.
Laemmli U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, London 227: 680–685.
Li, X., Li, M., Zhang, T., McClements, D. J., Liu, X., Wu, X., & Liu, F. 2021. Enzymatic and nonenzymatic conjugates of lactoferrin and (−)-epigallocatechin gallate: Formation, structure, functionality, and allergenicity. Journal of Agricultural and Food Chemistry, 69(22): 6291-6302.
Liu, F., Sun, C., Yang, W., Yuan, F., & Gao. Y, 2015. Structural characterization and functional evaluation of lactoferrin–polyphenol conjugates formed by free-radical graft copolymerization. Rsc Advances, 5(20): 15641-15651.
Liu, J., Yong, H., Yao, X., Hu, H., Yun, D., & Xiao, L. 2019. Recent advances in phenolic–protein conjugates: Synthesis, characterization, biological activities and potential applications. RSC advances, 9(61): 35825-35840.
Luo, X., Lu, J., Wu, Y., Duan, W., An, F., Huang, Q., ... & Wei, S. 2022. Reducing the potential allergenicity of amandin through binding to (−)-epigallocatechin gallate. Food Chemistry: X, 16, 100482.
Quan, T. H., Benjakul, S., Sae-leaw, T., Balange, A. K., & Maqsood, S. 2019. Protein–polyphenol conjugates: Antioxidant property, functionalities and their applications. Trends in Food Science & Technology, 91: 507-517.
Rice-Evans, C. A., Miller, N. J., & Paganga, G. 1996. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free radical biology and medicine, 20(7): 933-956.
Shi, J., Cui, Y. F., Zhou, G., Li, N., Sun, X., Wang, X., & Xu, N. 2022. Covalent interaction of soy protein isolate and chlorogenic acid: Effect on protein structure and functional properties. LWT, 170: 114081.
Sha, L., Koosis, A. O., Wang, Q., True, A. D., & Xiong, Y. L. 2021. Interfacial dilatational and emulsifying properties of ultrasound-treated pea protein. Food Chemistry, 350: 129271.
Sui, X., Zhang, T., & Jiang, L. 2021. Soy protein: Molecular structure revisited and recent advances in processing technologies. Annual Review of Food Science and Technology, 12(1): 119-147.
Thongzai, H., Matan, N., Ganesan, P., & Aewsiri, T. 2022. Interfacial properties and antioxidant activity of whey protein-phenolic complexes: Effect of phenolic type and concentration. Applied Sciences, 12(6): 2916.
Wang, H., Yan, Y., Feng, X., Wu, Z., Guo, Y., Li, H., & Zhu, Q. 2020. Improved physicochemical stability of emulsions enriched in lutein by a combination of chlorogenic acid–whey protein isolate–dextran and vitamin E. Journal of Food Science, 85(10): 3323-3332.
Yan, S., Wang, Q., Yu, J., Li, Y., & Qi, B. 2023. Ultrasound-assisted preparation of protein–polyphenol conjugates and their structural and functional characteristics. Ultrasonics Sonochemistry, 100: 106645.