مقایسه روش‌های قلیایی و آنزیمی استخراج در ویژگی‌ها و راندمان هیدرولیز پروتئین دانه گوجه‌فرنگی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 1 دانش آموخته کارشناسی ارشد علوم و صنایع غذایی، گروه علوم و صنایع غذایی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

2 دانشیار گروه علوم و صنایع غذایی، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 استادیار گروه علوم و صنایع غذایی، دانشکده مهندسی زراعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

چکیده

در تحقیق حاضر پروتئین دانه گوجه‌فرنگی با استفاده از استخراج قلیایی در pHهای 10، 11 و 12، استخراج آنزیمی توسط آنزیم‌های آلکالاز L4/2 و فلاورزیم L500 با غلظت‌های 1 و 2 درصد و تلفیقی از استخراج آنزیمی و قلیایی تولید شد. راندمان استحصال و خلوص پروتئین، درجه هیدرولیز و وزن مولکولی پروتئین‌های استخراج شده ارزیابی گردید. نتایج نشان داد که پروتئین هیدرولیز شده توسط آلکالاز به‌صورت معنی‌داری از لحاظ راندمان استخراج پروتئین (8/78 درصد) بالاتر از سایر پروتئین‌های استحصال شده بود (05/0p<). اما هیچ تفاوت معنی‌داری از لحاظ خلوص پروتئین با پروتئین‌های حاصل از استخراج قلیایی وجود نداشت (05/0p>). در بررسی اثر استخراج قلیایی پس از هیدرولیز آنزیمی مشخص شد که خلوص پروتئین و در نتیجه راندمان استخراج نسبت به هیدرولیز منفرد آنزیمی کاهش یافت. علاوه بر این، در مقایسه با پروتئین‌های حاصل از استخراج قلیایی، وزن مولکولی پروتئین‌های هیدرولیز شده متناسب با وسعت هیدرولیز آنزیمی کاهش یافت. بنابراین پروتئین‌های هیدرولیز شده توسط آلکالاز با توجه به درجه هیدرولیز بالاتر پپتیدهایی با وزن مولکولی کمتر از 10 کیلو دالتون داشتند. به طور کلی، استخراج پروتئین تحت تاثیر pH، نوع و غلظت آنزیم مورد استفاده قرار گرفته بود.
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Comparison of enzymatic and alkaline treatment on hydrolysis yield and properties of tomato seed protein

نویسندگان [English]

  • m amiri 1
  • A motamed zadegan 2
  • H Hosseini 3
1 1
2 2
3 2
طالعی ا، صادقی ماهونک ع، قربانی م، جعفری س، اعلمی م، 1390، تاثیر فرآیند حرارتی بر خصوصیات شیمیایی و عملکردی آرد دانه گوجه‌فرنگی، نشریه پژوهش‌های علوم و صنایع غذایی ایران، 7(2)، 107-99.
Amza T, Balla A, Tounkara F, Man L and Zhou H, 2013. Effect of hydrolysis time on nutritional, functional and antioxidant properties of protein hydrolysates prepared from gingerbread plum (Neocarya macrophylla) seeds. International Food Research Journal 20(5): 2081-2090.
AOAC, 2002. Association of Official Analytical Chemists of AOAC International. Official Method of Analysis 15th.
Bassler O, Weiss J, Wienkoop S, Lehmann K, Scheler C, Dolle S and Weckwerth W, 2009. Evidence for novel tomato seed allergens: IgE-reactive legumin and vicilin proteins identified by multidimensional protein fractionation-mass spectrometry and in silico epitope modeling. Journal of Proteome Research 8(3): 1111–1122.
Del Valle M, Cámara M and Torija M, 2003. Effect of pomace addition on tomato paste quality. ISHS Acta Horticulturae 613: VIII International Symposium on the Processing Tomato, Istanbul, Turkey: ActaHort CD-rom format only 399-406.
Eggers L, 1975. Some biochemical and electron microscopic studies of the protein present in seed recovered from tomato cannery waste. Dissertation Abstracts International 35(8).
El Nockrashy A and Mukherjee K, 1977. Rapeseed protein isolates by coun- tercurrent extraction and isoelectric precipitation. Journal of Agricultural and Food Chemistry 25: 193–197.
Eromosele C, Arogundade L, Eromosele I and Ademuyiwa O, 2008. Extractability of African yam bean (Sphenostylis stenocarpa) protein in acid, salt and alkaline aqueous media. Food Hydrocolloids 22: 1622-1628.
Ghaly A, Ramakrishnan V, Brooks M and Badge S, 2013. Extraction of Proteins from Mackerel Fish Processing Waste Using Alcalase Enzyme. Journal of Bioprocessing and Biotechniques 3(2).
Klompong V, Benjakul S, Kantachote D and Shahid F, 2007. Antioxidative activity and functional properties of protein hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influence by the degree of hydrolysis and enzyme type. Food Chemistry 102: 120–131.
Laemmli U, 1970. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature 227: 680–685.
Latlief S and Knorr D, 1983. Tomato seed protein concentrates: Effects of methods of recovery upon yield and compositional characteristics. Journal of Food Science 48(6): 1583–1586.
Layne E, 1957. Spectrophotometric and turbidimetric methods for measuring proteins. Methods in Enzymology 3: 450.
Liadakis G, Tzia C, Oreopoulou V and Thomopoulos C, 1998. Isolation of tomato seed meal proteins with salt solutions. Journal of Food Science 63(3): 450–453.
Muhamyankaka V, Shoemaker C, Nalwoga M and Zhang X, 2013. Physicochemical properties of hydrolysates from enzymatic hydrolysis of pumpkin (Cucurbita moschata) protein meal. International Food Research Journal 20(5): 2227-2240.
Nemati M, Javadian S, Ovissipour M and Keshavarz M, 2012. A Study on the Properties of Alosa (Alosa caspia) By-Products Protein Hydrolysates Using Commercial Enzymes. World Applied Sciences Journal 18(7): 950-956.
Ng KL, 2012. Enzymatic preparation of palm kernel expeller protein hydrolysate. International Food Research Journal 19(2): 721-725.
Ovissipour M, Abedian A, Motamedzadegan A, Rasco B, Safari R and Shahiri H, 2009. The effect of enzymatic hydrolysis time and temperature on the properties of protein hydrolysates from the Persian sturgeon (Acipenser persicus) viscera. Food Chemistry 115: 238–242.
Quaglia GB and Orban E, 1990. Influence of enzymatic hydrolysis on structure and emulsifying properties of sardine (Sardina pilchardus) protein hydrolysates. Journal of Food Science 55(6): 1571-1573.
Rondel C, Portet B, Alric I, Mouloungui Z, Blanco JF and Silvestre F, 2011. Green Production of Anionic Surfactant Obtained from Pea Protein. Journal of Surfactants and Detergents 14(4): 535-544.
Ruiz Celma A, Cuadros F and López-Rodríguez F, 2009. Characterisation of industrial tomato by-products from infrared drying process. Food and Bioproducts Processing 87(4): 282–291.
Sagiroglu A and Ozcan H, 2009. Functional and biochemical properties of proteins from safflower seed. Preparative Biochemistry and Biotechnology 39: 159–169.
Sathivel S, Bechtel P, Babbitt J, Smiley S, Crapo C, Reppond K and Prinyawiwatkul W, 2003. Biochemical and functional properties of Herring (Clupea harengus) byproduct hydrolysates. Journal of Food Chemistry and Toxicology 68: 2196-2200.
Schwass D and Finley J, 1984. Heat and alkaline damage to proteins: racemization and lysinoalanine formation. Journal of Agricultural and Food Chemistry 32: 1377–1382.
Selling G, Hojilla-Evangelista M, Evangelistab R, Isbell T, Price N and Doll K, 2013. Extraction of proteins from pennycress seeds and press cake. Industrial Crops and Products 41: 113– 119.
Shao D, G. Atungulu G, Pan Z, Yue T, Zhang A and Fan Z, 2013. Characteristics of isolation and functionality of protein from tomato pomace produced with different industrial processing methods. Food and Bioprocess Technology doi:10.1007/s11947-013-1057-0.
Shen L, Wang X, Wang Z, Wu Y and Chen J, 2008. Studies on tea protein extraction using alkaline and enzyme methods. Food Chemistry 107(2): 929-938.
Soetrisno U and Holmes Z, 1992. Protein yields and characteristics from acid and salt coagulations of yellow pea (Pisum sativum l miranda) flour extractions. Journal of Agricultural and Food Chemistry 40: 970–974.
Tang S, Hettiarachchy N, Horax R and Eswaranandam S, 2003. Physicochemical properties and functionality of rice bran protein hydrolyzate prepared from heat-stabilized defatted rice bran with the aid of enzymes. Journal of Food Science 68(1): 152–157.
Zhang H, Zhang HJ, Wang L and Guo XN, 2012. Preparation and functional properties of rice bran proteins from heat-stabilized defatted rice bran. Food Research International 47: 359–363.
Zhang T, Jiang B and Wang Z, 2007. Gelation properties of chickpea protein isolates. Food Hydrocolloids 21(2): 280–286.
Zhao Q, Xiong H, Selomulya C, Chen X, Zhong H, Wang S and Zhou Q, 2012. Enzymatic hydrolysis of rice dreg protein: Effects of enzyme type on the functional properties and antioxidant activities of recovered proteins. Food Chemistry 134: 1360–1367.