بررسی ویژگی‌های فیزیکی و ضد میکروبی فیلم بیونانوکامپوزیت آلژینات سدیم – آگار حاوی نانو نقره و نانو فیبر سلولز

نوع مقاله: مقاله پژوهشی

نویسندگان

1 1 دانشجوی کارشناسی ارشد گروه علوم و صنایع غذایی دانشگاه آزاد اسلامی، واحد تبریز

2 2 استادیار گروه علوم و صنایع غذایی دانشکده کشاورزی دانشگاه ارومیه

چکیده

‌در این پژوهش، فیلم ضدمیکروبی بیونانوکامپوزیت چهارگانه متشکل از آلژینات سدیم-آگار- نانوفیبر سلولز (CNF)- نانوذرات نقره (Ag) با روش قالب گیری تولید شد و تأثیر غلظت CNF (1، 5 و 10% وزنی) و Ag (1/0 و 5/0 % وزنی) بر روی خواص فیزیکی (مکانیکی، حرارتی، بازدارندگی ویژگی‌های ساختاری) و خاصیت ضدمیکروبی فیلم مورد ارزیابی قرار گرفت. نفوذپذیری نسبت به بخار آب (WVP) با افزایش میزان CNF و Ag کاهش یافته و استحکام کششی بیشتر شد. با این وجود، در غلظت 10% CNF، به دلیل توده شدن نانوذرات، خواص بازدارندگی و مکانیکی فیلم اندکی تضعیف شد. فیلم حاوی 5% CNF و 5/0 % Ag بیشترین استحکام کششی (MPa 07/23) و کمترین WVP (g/m.s.Pa 10-10×07/1) را نشان داد. دمای ذوب بیوپلیمر با افزودن نانوتقویت کننده‌ها افزایش یافت اما تأثیر CNF در این افزایش، بیشتر از Ag بود. همچنین فیلم‌های حاوی Ag اثر کشندگی در برابر باکتری E.Coli از خود نشان دادند. CNF این فعالیت ضدمیکروبی Ag را کاهش داد که دلیل آن کنترل رهایش نانوذرات Ag بود. بطور کلی، فیلم‌های بیونانوکامپوزیت بدست آمده، بهبود قابل توجهی در خواص مکانیکی، حرارتی و بازدارندگی و ویژگی‌های ضدمیکروبی نشان دادند که مشخص می‌کند که این نوع فیلم می‌تواند گزینه مناسبی برای استفاده بعنوان بسته بندی فعال مواد غذایی باشد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the physical and antimicrobial properties of sodium alginate – agar based bionanocomposite film containing nanosilver and cellulose nanofiber

نویسندگان [English]

  • MR B 1
  • H A 2
2 2
قنبرزاده ب، الماسی ه و زاهدی ی، 1388. بیوپلیمرهای زیست تخریب پذیر و خوراکی در بسته بندی مواد غذایی ودارویی. انتشارات دانشگاه امیرکبیر (پلی تکنیک)، تهران.
Abdul Khalil HPS, Bhat AH and Ireana Yusra AF, 2012. Green composites from sustainable cellulose nanofibrils: A review. Carbohydrate Polymers 87: 963-979.
Ahvenainen R, 2003. Active and intelligent packaging: An introduction. pp. 5–21. In: Ahvenainen R, (ed.), Novel food packaging techniques. Woodhead Publishing, Cambridge, U.K.
Almasi H, Ghanbarzadeh, B, Dehghannia, J, Entezami, AA and Khosrowshahi Asl A, 2015. Novel nanocomposites based on fatty acid modified cellulose nanofibers/poly (lactic acid): morphological and physical properties. Food Packaging and Shelf Life 5: 21-31.
Arockianathan PM, Sekar S, Sankar S, Kumaran B and Sastry TP, 2012. Evaluation of biocomposite films containing alginate and sago starch impregnated with silver nanoparticles. Carbohydrate Polymers 90: 717-724.
ASTM. Standard test methods for tensile properties of thin plastic sheeting. D882-10. Annual book of ASTM, 2010, Philadelphia, PA: American Society for testing and Materials.
ASTM. Standard test methods for water vapor transmission of material. E96-05. Annual book of ASTM, 2005, Philadelphia, PA: American Society for Testing and Materials.
Chaurasia V and Bajpai SK 2012. Moisture uptake behavior, antibacterial property, and heat of sorption of nano silver-loaded calcium alginate film.International Journal of Polymeric Materials and Polymeric Biomaterials 66: 711-718. 
Cherian BM, Leao AL, de Souza SF, Costa LMM, de Olyveira GM and Kottaisamy M, 2011. Cellulose nanocomposites with nanofibres isolated from pineapple leaf fibers for medical applications. Carbohydrate Polymers 86(4): 1790–1798.
Crossingham   YJ, Kerr PG and Kennedy RA, 2014. Comparison of selected physico chemical properties of calcium alginate films prepared by two different methods. International Journal of Pharmaceutics 473: 259–269.
Cushen M, Kerry J, Morris M, Cruz-Romero M and Cummins E, 2014. Silver migration from nanosilver and a commercially available zeolite filler polyethylene composites to food simulants, Food Additives & Contaminants: Part A 47: 312-319.
De Moura MR, Mattoso LHC and Zucolotto V, 2012. Development of cellulose-based bactericidal nanocomposites containing silver nanoparticles and their use as active food packaging. Journal of Food Engineering 109: 520-524.
Fortunati E, Armentano I and Kenny JM, 2012. Multifunctional bionanocomposite films of poly (lactic acid), cellulose nanocrystals and silver nanoparticles. Journal Carbohydrate Polymers 87: 1596-1605.
Fortunati S, Rinaldi M, Peltzer N, Bloised L, Visaid I, Armentano A, Jiménez L and Latterini JM, 2014. Nano-biocomposite films with modified cellulose nanocrystals andsynthesized silver nanoparticles. Carbohydrate Polymers 101: 1122– 1133.
Galus S and Lenart A, 2013. Development and characterization of composite edible films based on sodium alginate and pectin. Journal of Food Engineering 115: 459–465.
Ghanbarzadeh B and Almasi H, 2013. Boidegradable polymers. Pp. 141-186. In: Chamy R and Rosenkranz F (Eds). Biodegradation- life of science. InTech Publications, Croatia.
Gimenez B, Lopez de Lacey A, Perez-Santín E, Lopez-Caballero ME and Montero P, 2013. Release of active compounds from agar and agar-gelatin films with green tea extract. Food Hydrocolloids 30: 264–271.
Ibrahim MM, El-Zawawy WK and Nassar MA, 2010. Synthesis and characterization of polyvinyl alcohol/nanospherical cellulose particle films. Carbohydrate Polymers 79: 694-699.
Jost V, Kobsik K, Schmid M and Noller K, 2014. Influence of plasticizer on the barrier, mechanical and greaseresistance properties of alginate cast films. Carbohydrate Polymers 110: 309–319.
Kanmani P and Rhim JW, 2014. Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloids 35: 644-652.
Kaushik A, Singh M and Verma G, 2010. Green nanocomposites based on thermoplastic starch and steam exploded cellulose nanofibrils from wheat straw. Carbohydrate Polymers 82(2): 337-345.
Lopez-Carballo G, Higueras L, Gavara R and Hernandez-Munoz P, 2013. Silver ions release from antibacterial chitosan films containing in situ generated silver nanoparticles. Journal of Agriculture and Food Chemistry 61: 260−267.
Marie P, Sekar S, Kumaran B and Sastry TP 2012. Preparation, characterization and evaluation of biocomposite films containing chitosan and sago starch impregnated with silver nanoparticles. International Journal of Biological Macromolecules 12: 1-33.
Mariniello L, Giosafatto CVL, Moschetti G, Aponte M, Masi P, Sorrentino A and Porta R, 2007. Fennel Waste-based films suitable for protecting cultivations. Biomacromols8: 3008–3014.
Sarsar V, Selwal KK and Selwal MK, 2014. Nanosilver: Potent antimicrobial agent and its biosynthesis. African Journal of Biotechnology 13(4): 546-554.
Shankar S, Teng X, Li G and Rhim JW, 2015. Preparation, characterization, and antimicrobial activity of gelatin/ZnO nanocomposite films. Food Hydrocolloids 117: 341-349.
Suryanegara L, Nakagaito AN and Yano H, 2009. The effect of crystallization of PLA on the thermal and mechanical properties of microfibrillated cellulose-reinforced starch composites. Composites Science and Technology 69: 1187–1192.