قنبرزاده ب، الماسی ه و زاهدی ی، 1388، بیوپلیمرهای زیست تخریب پذیروخوراکی در بسته بندی موادغذایی. انتشارات دانشگاه صنعتی امیرکبیر. چاپ اول، صفحات14ـ10.
مرادی م، تاجیک ح، رضوی روحانی م، ارومیه ای ع، ملکی نژاد ح، قاسم مهدی ه، 1391، تهیه و ارزیابی خصوصیات فیلم آنتی اکسیدان کیتوزان حاوی عصاره دانه انگور، فصلنامه گیاهان دارویی، 11، 51-42.
مهدی زاده ت، تاجیک ح، رضوی روحانی م، ارومیه ای ع، 1391، ارزیابی ویژگیهای ضدباکتریایی، آنتی اکسیدانی و نوری فیلم خوراکی نانوکامپوزیتی نشاسته- کیتوزان حاوی عصاره الکلی پوست انار، مجله پزشکی ارومیه، (3)22، 323-315.
Abbasi N, Azizi Jalilian F, Abdi M and Saifmanesh MA, 2007. Comparative study of the antimicrobial effect of Scrophularia striata Boiss: extract and selective antibiotics against Staphylococcus aureus and Pesudomonas aeroginosa. Journal of Medical Plants 1(6): 10-18.
Almasi H, Ghanbarzadeh B and Entezami AA, 2010. Physicochemical propertiesof starch–CMC–nanoclay biodegradable films. International Journal of Biological Macromolecules 46: 1–5.
Angles MN and Dufresne A, 2001. Plasticized starch/tunicin whiskers nanocomposites. Macromolecules 34: 2921-2931.
ASTM. 1995. Standard test methods for water vapor transmission of material, E96-95. Annual book of ASTM, Philadelphia, PA: American Society for Testing and Materials.
ASTM. 2010. Standard test methods for tensile properties of thin plastic sheeting. D882-10. Annual book of ASTM, Philadelphia, PA: American Society for Testing and Materials.
Azadmehr A, Alizadeh Oghyanous K, Hajiaghaee R, Amirghofran Z and Azadbakht M, 2013. Antioxidant and neuroprotective effects of Scrophularia striata extract against oxidative stress-induced neurotoxicity. Cellular Molecular Neurobiology 33: 1135–1141.
Chen G and Liu B, 2016. Cellulose sulfate based film with slow-release antimicrobial properties prepared by incorporation of mustard essential oil and β-cyclodextrin. Food Hydrocolloids 55: 100-107.
Esa F, Tasirin SM and Rahman NA, 2014. Overview of bacterial cellulose production and application. Agriculture and Agricultural Science Procedia 2: 113–119.
Fu L, Zhang Y, Li C, Wu Z, Zhuo Q and Huang X, 2010. Skin tissue repair materials from bacterial cellulose by a multilayer fermentation method. Journal of Materials Chemistry 22(24): 12349-12357.
Hill L, Gomes C, and Taylor TM, 2013. Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT - Food Science and Technology 51: 86-93.
Jipa IM, Stoica-Guzun A and Stroescu M, 2012. Controlled release of sorbic acid from bacterial cellulose based mono and multilayer antimicrobial films. LWT-Food Science and Technology 47: 400-406.
Lopez-Rubio A, Gavara R and Lagaron JM, 2006. Bioactive packaging: turning foods into healthier foods through biomaterials. Trends in Food Science & Technology 17: 567-575.
Mohdaly AA, Smetanska I, Ramadan MF, Sarhan MA and Mahmoud A, 2011. Antioxidant potential of sesame (Sesamum indicum) cake extract in stabilization of sunflower and soybean oils. Industrial Crops and Products 34: 952– 959.
Monsef–Esfahani HR, Hajiaghaee R, Shahverdi AR, Khorramizadeh MR and Amini M, 2010. Flavonoids, cinnamic acid and phenyl propanoid from aerial parts of Scrophularia striata. Pharmaceutical Biology 48(3): 333–336.
Nguyen VT, Gidley MG and Dykes GA, 2008. Potential of a nisin-containing bacterial cellulose film to inhibit Listeria monocytogenes on processed meats. Food Microbiology 25: 471–478.
Rajwade JM, Paknikar KM, and Kumbhar JK, 2015. Applications of bacterial cellulose and its composites in biomedicine. Applied Microbiology and Biotechnology 99: 2491–2511.
Safdari L, Dehghan, G and Hemmati A, 2013. Effect of silver nanoparticles and almond bark extract on the physical properties of biodegradable starch-PVA films. 1st international life science conference and 12th Iran biophysical chemistry conference. Tabriz, Iran, 22-24 May.
Shah N, Ul-Islam M, Khattak WA and Park JK, 2013. Overview of bacterial cellulose composites: a multipurpose advanced material. Carbohydrate Polymers 98: 1585–1598.
Shahmohammadi Jebel F and Almasi H, 2016. Morphological, physical, antimicrobial and release properties of ZnOnanoparticles-loaded bacterial cellulose films. Carbohydrate Polymers 149: 8–19.
Shi Z, Zhang Y, Phillips GO and Yang G, 2014. Utilization of bacterial cellulose in food. Food Hydrocolloids 35: 539-545.
Siripatrawan U and Harte H, 2010. Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids 24: 770-775.
Stroescu M, Stoica-Guzun A and Jipa IM, 2013. Vanillin release from poly(vinylalcohol)-bacterial cellulose mono and multilayer films. Journal of Food Engineering 114: 153–157.
Sun X, Sui S, Ference Ch, Zhang Y, Sun Sh, Zhou N, Zhu W and Zhou K, 2014. Antimicrobial and mechanical properties of β‑Cyclodextrin inclusion with essential oils in chitosan films. Journal of Agricultural and Food Chemistry 62(35): 8914–8918.
Wang J, Liu W, Li H, Wang H, Wang Z and Zhou W, 2013. Preparation of cellulose fiber–TiO2 nanobelt–silver nanoparticle hierarchically structured hybrid paper and its photocatalytic and antibacterial properties. Chemical Engineering Journal 228: 272–280.
Zamanian-Azodi M, Ardeshirylajimi A, Ahmadi N, Rezaee MB, Azizi Jalilian F and Khodarahmi R, 2013. Antibacterial effects of Scrophularia striata seed aqueous extract on Staphylococcus aureus. Journal of Paramedical Sciences 4: 4978-4984.