تاثیر نانوذرات تیتانیوم دی‌اکسید و نقره بر ویژگی‌های مکانیکی و ترموفیزیکی نانوکامپوزیت مورد استفاده در بسته‌بندی مواد غذایی

نویسندگان

1 مرکز تحقیقات و آموزش کشاورزی استان آذربایجان شرقی

2 گروه علوم و صنایع غذایی دانشگاه تبریز

چکیده

نانوکامپوزیت‌های بر پایه‌ی پلی‌استایرن با استفاده توام از نانوتیتانیوم دی‌اکسید و نانونقره (نسبت 7 به 3) به وسیله‌ی فرآیند اختلاط با ذوب در دمای °C190 و در دو سطح %5/0 و %1 تولید شدند. با استفاده ازمیکروسکوپ الکترونی روبشی(SEM) متصل شده با طیف‌نگاری پاشندگی انرژی اشعه‌ی x (EDS)، حضور و مقادیر نانوذرات تیتانیوم و نقره تایید شد. تصاویر حاصل ازSEM نشان داد که نانوذرات به صورت مجزا و تجمع یافته وجود دارند و به تبع آن، EDS هم نشان داد که تنها سه عنصر کربن، تیتانیوم و نقره در ساختار نانوکامپوزیت وجود دارد، همچنین، نسبت نانوتیتانیوم به نانونقره حدود 10 برابر بود. نتایج حاصل از آزمون کشش نشان داد که افزودن نانوذرات منجر به کاهش جزئی مدول یانگ و تنش در نقطه‌ی شکست نانوکامپوزیت‌ها در مقایسه با پلی‌استایرن خالص شد و از نقطه نظر کرنش در نقطه‌ی شکست تفاوت معنی‌‌داری بین نانوکامپوزیت‌ها و پلی‌استایرن خالص مشاهده نشد (05/0˃P). تاثیر نانوذرات بر ویژگی‌های حرارتی شبکه‌ی پلیمری با استفاده از کالریمتری روبشی افتراقی و وزن‌سنجی حرارتی ارزیابی شد. ویژگی‌های حرارتی نانوکامپوزیت‌ها از نقطه نظر دمای انتقال شیشه‌ای و پایداری حرارتی در مقایسه با پلی‌استایرن خالص بهبود جزئی نشان داد.

کلیدواژه‌ها


عنوان مقاله [English]

The effect on titanium dioxide and silver nanoparticles on the mechanical and thermophysical properties of nanocomposite used in the food packaging

نویسندگان [English]

  • J Soleimani 1
  • B Ghanbarzadeh 2
  • J Dehghannia 2
Akay M, 2012. Introduction to Polymer Science and Technology, Mostafa Akay & Ventus publishing ApS. Bookboon.com.
Alam MA, Arif S and Shariq M, 2014. Enhancement in Mechanical Properties of Polystyrene-ZnO Nanocomposites. International Journal of Innovative Research in Advanced Engineering, 2: 122-129.
Amr IT, Al-Amer A, Thomas SP, Sougrat R and Atieh MA, 2015. Mechanical, Rheological and Thermal Properties of Polystyrene/1-Octadecanol Modified Carbon Nanotubes Nanocomposites. Fullerenes, Nanotubes and Carbon Nanostructures, 23: 209-217.
Arvanitoyannis IS and Kotsanopoulos KV, 2014. Migration phenomenon in food packaging. Food–package interactions, mechanisms, types of migrants, testing and relative legislation-a review. Food and Bioprocess Technology, 7, 21-36.
ASTM D638, Standard Test Method for Tensile Properties of Plastics
Azlin-Hasim S, Cruz-Romero MC, Morris MA, Cummins E and Kerry JP, 2015. Effects of a combination of antimicrobial silver low density polyethylene nanocomposite films and modified atmosphere packaging on the shelf life of chicken breast fillets. Food Packaging and Shelf Life, 4: 26-35.
Bastarrachea L, Dhawan S and Sablani SS, 2011. Engineering properties of polymeric-based antimicrobial films for food packaging: a review. Food Engineering Reviews, 3, 79-93.
Beltrami D, Calestani D, Maffini M, Suman M, Melegari B, Zappettini A, Zanotti L, Casellato U, Careri M and Mangia A, 2011. Development of a combined SEM and ICP-MS approach for the qualitative and quantitative analyses of metal microparticles and sub-microparticles in food products. Analytical and bioanalytical chemistry, 401: 1401-1409.
Bumbudsanpharoke N and Ko S, 2015. Nano‐food packaging: An overview of market, migration research, and safety regulations. Journal of Food Science, 80: 910-923.
Cao G, 2004. Nanostructures and nanomaterials: synthesis, properties and applications. Imperical Callege Press, London.
Chae DW and Kim BC, 2005. Physical properties of isotactic poly (propylene)/silver nanocomposites: Dynamic crystallization behavior and resultant morphology. Macromolecular Materials and Engineering, 290: 1149-1156.
Dallas P, Sharma VK and Zboril R, 2011. Silver polymeric nanocomposites as advanced antimicrobial agents: classification, synthetic paths, applications, and perspectives. Advances in Colloid and Interface Science, 166, 119-135.
Dastafkan K, Khajeh M, Ghaffari-Moghaddam M and Bohlooli M, 2015. Silver nanoparticles for separation and preconcentration processes. TrAC Trends in Analytical Chemistry, 64: 118-126.
Duncan TV, 2011. Applications of nanotechnology in food packaging and food safety: barrier materials, antimicrobials and sensors. Journal of colloid and interface science, 363: 1-24.
Greco A, Corcione CE, Strafella A, Maffezzoli A, 2010. Analysis of the structure and mass transport properties of clay nanocomposites based on amorphous PET. Journal of applied polymer science, 118: 3666-3672.
Greco A, Gennaro R, Rizzo M, 2012. Glass transition and cooperative rearranging regions in amorphous thermoplastic nanocomposites. Polymer International, 61: 1326-1333.
Hashimoto K, Fujishima A and Watanabe, T, 1999. TiO2 photocatalysis fundamentals and applications: BKC Incorporated, Tokyo.
Jang I, Sung J, Choi H, Chin I, 2005. Synthesis and characterization of TiO2/polystyrene hybrid nanoparticles via admicellar polymerization. Journal of materials science, 40: 3021-3024.
Jeon IY and Baek JB, 2010. Nanocomposites derived from polymers and inorganic nanoparticles. Materials, 3: 3654-3674.
Kanmani P and Rhim JW, 2014. Physicochemical properties of gelatin/silver nanoparticle antimicrobial composite films. Food chemistry, 148: 162-169.
Katancic Z, Travas-Sejdic J, Hrnjak-Murgic Z, 2011. Study of flammability and thermal properties of high-impact polystyrene nanocomposites. Polymer degradation and stability, 96: 2104-2111.
Kumar RV, Koltypin Y, Palchik O and Gedanken A, 2002. Preparation and characterization of nickel–polystyrene nanocomposite by ultrasound irradiation. Journal of applied polymer science, 86: 160-165.
Lee JY, Liao Y, Nagahata R and Horiuchi S, 2006. Effect of metal nanoparticles on thermal stabilization of polymer/metal nanocomposites prepared by a one-step dry process. Polymer, 47: 7970-7979.
Lee MW, Wang TU and Tsai JL, 2016. Mechanical properties of nanocomposites with functionalized graphene. Journal of composite materials, 50: 3779-3789.
 Li B, Wang X, Yan M and Li L, 2003. Preparation and characterization of nano-TiO2 powder. Materials Chemistry and Physics, 78: 184-188.
Liu Y, Wu H and Chen G, 2016. Enhanced mechanical properties of nanocomposites at low graphene content based on in situ ball milling. Polymer composites, 37: 1190-1197.
Lin QB, Li H, Zhong HN, Zhao Q, Xiao DH and Wang ZW, 2014. Migration of Ti from nano-TiO2-polyethylene composite packaging into food simulants. Food Additives and Contaminants: Part A, 31, 1284-1290.
Ma CCM, Chen YJ and Kuan HC, 2005. Polystyrene nanocomposite materials: preparation, morphology, and mechanical, electrical, and thermal properties. Journal of applied polymer science, 98: 2266-2273.
Mansour SA, 2013. Study of thermal stabilization for polystyrene/carbon nanocomposites via TG/DSC techniques. Journal of thermal analysis and calorimetry, 112: 579-583.
Merinska D and Dujkova Z, 2011. Polystyrene (nano) composites with possible antibacterial effect.  Pp. 377-381. Proceedings of the 13th WSEAS international conference on Mathematical and computational methods in science and engineering, World Scientific and Engineering Academy and Society (WSEAS).
Palomba M, Carotenuto G, Cristino L, Di Grazia M, Nicolais F, De Nicola S, 2012. Activity of antimicrobial silver polystyrene nanocomposites. Journal of Nanomaterials, 2012, 1-7.
Pandy JK, Reddy KR, Kumar AP and Singh R, 2005. An overview on the degradability of polymer nanocomposites. Polymer degradation and stability, 88: 234-250.
Pashaei S, Hosseinzadeh S and Moludpoor N, 2017. Fabrication and characterization of nanostructured TiO2 and turmeric spent incorporated polystyrene hybrid nanocomposites. Iranian Chemical Communication, 5, 16-27.
Piringer OG and Baner AL, 2008. Plastic packaging: interactions with food and pharmaceuticals: John Wiley and Sons, NewYork.
Rhim JW, Park HM and Ha CS, 2013. Bio-nanocomposites for food packaging applications. Progress in Polymer Science, 38, 1629-1652.
Rong Y, Chen HZ, Wu G and Wang M, 2005. Preparation and characterization of titanium dioxide nanoparticle/polystyrene composites via radical polymerization. Materials Chemistry and Physics, 91: 370-374.
Saujanya C and Radhakrishnan S, 2001. Structure development and crystallization behaviour of PP/nanoparticulate composite. Polymer, 42: 6723-6731.
Solomon DH and Hawthorne DG, 1983. Chemistry of pigments and fillers. Wiley, New York.
Svagan AJ, Hedenqvist MS and Berglund L, 2009. Reduced water vapour sorption in cellulose nanocomposites with starch matrix. Composites Science and Technology, 69: 500-506.
Umek P, Huskic M, Škapin AS, Florjancic U, Zupancic B, Emri I and Arcon D, 2009. Structural and mechanical properties of polystyrene nanocomposites with 1D titanate nanostructures prepared by an extrusion process. Polymer Composites, 30: 1318-1325.
Varner K, Sanford J, El-Badawy A, Feldhake D and Venkatapathy R, 2010. State of the science literature review: everything nanosilver and more. US Environmental Protection Agency, Washington DC, 363.
Vaziri HS, Omaraei IA, Abadyan M, Mortezaei M, Yousefi N, 2011. Thermophysical and rheological behavior of polystyrene/silica nanocomposites: investigation of nanoparticle content. Materials & Design, 32: 4537-454
Venkatachalam N, Palanichmy M and Murgesan V, 2007. Sol–gel preparation and characterization of nanosize TiO2: its photocatalytic performance. Materials Chemistry and Physics, 104: 454-459.
Xing Y, Li X, Zhang L, Xu Q, Che Z, Li W, Bai Y and Li K, 2012. Effect of TiO2 nanoparticles on the antibacterial and physical properties of polyethylene-based film. Progress in Organic Coatings, 73: 219-224.
Yazdimamaghany M, Pourvala T, Motamedi E, Fathi B, Vashaee D and Tayebi L, 2013. Synthesis and characterization of encapsulated nanosilica particles with an acrylic copolymer by in situ emulsion polymerization using thermoresponsive nonionic surfactant. Materials, 6: 3727-3741.
Zan L, Tian L, Liu Z and Peng Z, 2004. A new polystyrene–TiO 2 nanocomposite film and its photocatalytic degradation. Applied Catalysis A: General, 264: 237-242.