بررسی خصوصیات نانوالیاف پلی‌کاپرولاکتون-دی‌اکسید‌تیتانیوم به عنوان نانو جاذب اکسیژن در بسته‌بندی فعال موادغذایی در حضور پرتو UV-C

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه علوم و صنایع غذایی دانشکده کشاورزی، دانشگاه زنجان

چکیده

زمینه مطالعاتی: به نظر می رسد تا سال 2050 جمعیت جهان حدود 50 درصد افزایش می­یابد. از این رو به منظور مقابله با افزایش ناگهانی جمعیت و تأمین نیازهای اولیه غذایی، بشر به دنبال راه­هایی برای افزایش بهره­وری، کاهش ضایعات مواد غذایی و کاهش مصرف انرژی است. اکسیژن به عنوان یکی از مهم­ترین علل فساد موادغذایی و کشاورزی موجب تخریب عطر، طعم، رنگ و خصوصیات تغذیه­ای آنها می شود. بنابراین به منظور حذف اکسیژن و افزایش عمر مفید مواد غذایی در بسته­بندی آنها، از روش­هایی مانند پر کردن تحت خلاء، پر کردن داغ، تزریق گاز خنثی و بسته­بندی با اتمسفر اصلاح شده استفاده می­شود. یکی از بهترین روش های کاهش اثرات نامطلوب اکسیژن، توسعه جاذب های اکسیژن در بسته بندی مواد غذایی است. هدف: در این پژوهش به دنبال توسعه نانو جاذب اکسیژن مبتنی بر فعالیت فتوکاتالیستی نانو دی اکسیدتیتانیوم بر روی بستر الکتروریسی شده پلی کاپرولاکتون به عنوان جاذب اکسیژن در بسته­بندی مواد غذایی بودیم. روش­کار: در این پژوهش با استفاده از روش الکتروریسی محلولی از پلی کاپرولاکتون و مقادیر مختلف نانو دی­اکسید تیتانیوم ( 1%، 3% و 5%) در حلالی متشکل از کلروفورم-متانول، نانو جاذب اکسیژن تهیه شد. پس از ارزیابی نانوالیاف ها از لحاظ ریزساختار، محتوای مواد فرار و تخلخل، هر یک از این نانو الیاف در یک محفظه مناسب در معرض پرتوی فرابنفش C قرار داده شدند. تغییرات میزان اکسیژن درون محفظه در طی مدت 72 ساعت اندازه گیری شد.
نتایج: با افزایش میزان نانوذرات دی­اکسید تیتانیوم درون نانوالیاف، قابلیت جذب اکسیژن، تخلخل و میانگین قطر نانوالیاف افزایش یافت. از سوی دیگر با افزایش میزان نانوذرات دی­اکسید تیتانیوم میزان ترکیبات فرار در نانوالیاف کاهش یافت.
 نتیجه­گیری نهایی: نانوالیاف حاوی نانو ذرات دی­اکسید تیتانیوم در معرض تابش پرتوی فرابنفش C، می­تواند به­عنوان یک جاذب اکسیژن در بسته بندی موادغذایی حساس به اکسیژن به­کار گرفته شود.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of the characteristics of polycaprolactone-TiO2 nanofibers as nano- oxygen scavenger in the food active packaging exposed to UV-C radiation

نویسندگان [English]

  • F Khalifezadeh
  • I Shahabi
گودرزی و، شهابی­قهفرخی ا، 1395، تولید فیلم نشاسته با استفاده از واکنشهای نوری: بررسی ویژگیهای فیزیکی و شیمیایی، پژوهش­های صنایع غذایی، 26(3)، 520
Ahmadi A, Qanati O, Dorraji MS, Rasoulifard M & Vatanpour V, 2017. Investigation of antifouling performance a novel nanofibrous S-PVDF/PVDF and S-PVDF/PVDF/GO membranes against negatively charged oily foulants. Journal of Membrane Science, 536, 86-97.
Almasi H, Ghanbarzadeh B & Entezami A A, 2010. Physicochemical properties of starch–CMC–nanoclay biodegradable films. International journal of biological macromolecules, 46(1), 1-5.
Anpo M & Kamat P V, 2010. Environmentally benign photocatalysts: applications of titanium oxide-based materials: Springer Science & Business Media.
Azimi B, Nourpanah P, Rabiee M & Arbab S, 2014. Poly (ε-caprolactone) fiber: an overview. J Eng Fibers Fabr, 9(3), 74.
Bodbodak S & Rafiee Z, 2016. Recent trends in active packaging in fruits and vegetables. Eco-Friendly Technology for Postharvest Produce Quality, 77-125.
Brody A L, Strupinsky E & Kline L R. (2001). Active packaging for food applications: CRC press.
Brody A L, Strupinsky G R & Pruskin L R, 1995. The Use of Oxygen Scavengers and Active Packaging to Reduce Oxygen Within Internal Package Environments. Retrieved from
Cichello S A, 2015. Oxygen absorbers in food preservation: a review. Journal of food science and technology, 52(4), 1889-1895.
Close T, Tulsyan G, Diaz C A, Weinstein S J & Richter C, 2015. Reversible oxygen scavenging at room temperature using electrochemically reduced titanium oxide nanotubes. Nature nanotechnology, 10(5), 418-422.
Conforti P, 2011. Looking ahead in world food and agriculture: perspectives to 2050: Food and Agriculture Organization of the United Nations (FAO).
Cooksey K, 2010. Oxygen scavenging packaging systems. Encyclopedia Of Polymer Science and Technology.
Dadvar S, Tavanai H, & Morshed M, 2011. UV-protection properties of electrospun polyacrylonitrile nanofibrous mats embedded with MgO and Al2O3 nanoparticles. Journal of Nanoparticle Research, 13(10), 5163.
Demicheva M, 2015. Novel Oxygen Scavenger Systems for Functional Coatings.
Gaikwad K K, Singh S, & Lee Y S, 2017. A pyrogallol-coated modified LDPE film as an oxygen scavenging film for active packaging materials. Progress in Organic Coatings, 111, 186-195.
Ghosal K, Thomas S, Kalarikkal N & Gnanamani A, 2014. Collagen coated electrospun polycaprolactone (PCL) with titanium dioxide (TiO2) from an environmentally benign solvent: preliminary physico-chemical studies for skin substitute. Journal of Polymer Research, 21(5), 410.
Goudarzi V & Shahabi-Ghahfarrokhi I, 2015. Production of starch film by photochemical reactions: Physicochemical characterization.
Goudarzi V & Shahabi-Ghahfarrokhi I, 2018. Photo-producible and photo-degradable starch/TiO2 bionanocomposite as a food packaging material: Development and characterization. International journal of biological macromolecules, 106, 661-669.
Goudarzi V, Shahabi-Ghahfarrokhi I & Babaei-Ghazvini A, 2017. Preparation of ecofriendly UV-protective food packaging material by starch/TiO2 bio-nanocomposite: Characterization. International journal of biological macromolecules, 95, 306-313.
Gustavsson J, Cederberg C, Sonesson U, Van Otterdijk R & Meybeck A, 2011. Global food losses and food waste: FAO Rome.
Hamadanian M, Akbari A & Jabbari V, 2011. Electrospun titanium dioxide nanofibers: fabrication, properties and its application in photo-oxidative degradation of methyl orange (MO). Fibers and Polymers, 12(7), 880-885.
Jafari S, Sadeghi D, Yousefzadeh M, Solouk A, 2016. Electrospun Nanofibrous Scaffolds for Regeneration of Diseased Vessels. Textile Science and Technology, 5(4), 67-77.
Kerry J, O’grady M, & Hogan S, 2006. Past, current and potential utilisation of active and intelligent packaging systems for meat and muscle-based products: A review. Meat science, 74(1), 113-130.
Khamforoush M, Dabirian F & Majedi S, 2009. Alignment of electrospun nanofibers and prediction of electrospinning linear speed using a rotating jet. Iran J Polym Sci Technol (In Persian), 3, 233-242.
Khan F I & Ghoshal A K, 2000. Removal of volatile organic compounds from polluted air. Journal of loss prevention in the process industries, 13(6), 527-545.
Khavas M, Zaerhosseini M, Tavanie, M, Mahmoudi A, 2017. A Morphology Study of PA6 Electrospun Nanofibers Using a Single Nozzle and Two- Single Double Sided Nozzles. Apparel and Textile Science and Technology, 18, 43-51.
Liao Y, Que W, Jia Q, He Y, Zhang J & Zhong P, 2012. Controllable synthesis of brookite/anatase/rutile TiO 2 nanocomposites and single-crystalline rutile nanorods array. Journal of Materials Chemistry, 22(16), 7937-7944.
Limbo S & Khaneghah A, 2014. Active packaging of foods and its combination with electron beam processing. Electron Beam Pasteurization and Complementary Food Processing Technologies, 195.
Limbo S, Uboldi E, Adobati A, Iametti S, Bonomi F, Mascheroni E, Piergiovanni L, 2013. Shelf life of case-ready beef steaks (Semitendinosus muscle) stored in oxygen-depleted master bag system with oxygen scavengers and CO 2/N 2 modified atmosphere packaging. Meat science, 93(3), 477-484.
Liu C, Xiong H, Chen X, Lin S & Tu Y, 2015. Effects of nano‐tio2 on the performance of high‐amylose starch based antibacterial films. Journal of Applied Polymer Science, 132(32).
Lund M N, Heinonen M, Baron C P & Estevez M, 2011. Protein oxidation in muscle foods: A review. Molecular nutrition & food research, 55(1), 83-95.
Mesgaran M B, Madani K, Hashemi H & Azadi P, 2017. Iran’s Land Suitability for Agriculture. Scientific Reports, 7(1), 7670.
Mills A, Doyle G, Peiro A M & Durrant J, 2006. Demonstration of a novel, flexible, photocatalytic oxygen-scavenging polymer film. Journal of Photochemistry and Photobiology A: Chemistry, 177(2), 328-331.
Polarz S & Smarsly B, 2002. Nanoporous materials. Journal of nanoscience and nanotechnology, 2(6), 581-612.
Ramos Santonja M., Valdés García A, Ciller M, Cristina A, & Garrigós Selva M d C, 2015. New Trends in Beverage Packaging Systems: A Review.
Robertson, G. L. (2009). Food packaging and shelf life: a practical guide: CRC Press.
Salarbashi D, Mortazavi S A, Noghabi M S, Bazzaz B S F, Sedaghat N, Ramezani M, & Shahabi-Ghahfarrokhi I, 2016 Development of new active packaging film made from a soluble soybean polysaccharide incorporating ZnO nanoparticles. Carbohydrate polymers, 140, 220-227.
Shahidi F & Zhong Y, 2010. Lipid oxidation and improving the oxidative stability. Chemical Society Reviews, 39(11), 4067-4079.
Shin Y, Shin J & Lee Y S, 2011. Preparation and characterization of multilayer film incorporating oxygen scavenger. Macromolecular research, 19(9), 869-875.
Tang Z S, Bolong N, Ismail S & Ayog J L, 2016. The morphology of electrospun titanium dioxide nanofibers and its influencing factors. Paper presented at the MATEC Web of Conferences.
Tavakkol E, Hosseini R, 2015. A Study on the Relation between Nanofiber Mat Porosity and Its UV protection. Textile Science and Technology, 5(2), 31-36.
Tilman D, Cassman K G, Matson P A, Naylor R, & Polasky S, 2002. Agricultural sustainability and intensive production practices. Nature, 418(6898), 671-677.
Tulsyan G, Richter C, & Diaz C A, 2017. Oxygen Scavengers Based on Titanium Oxide Nanotubes for Packaging Applications. Packaging Technology and Science, 30(6), 251-256.
Xiao-e L, Green A N, Haque S A, Mills A & Durrant J R, 2004. Light-driven oxygen scavenging by titania/polymer nanocomposite films. Journal of Photochemistry and Photobiology A: Chemistry, 162(2), 253-259.
 ZhaoY, Hoivik N & Wang K, 2016. Recent advance on engineering titanium dioxide nanotubes for photochemical and photoelectrochemical water splitting. Nano Energy, 30, 728-744.