تولید نانودیسپرسیون کورکومین با استفاده از دو روش آب مادون بحرانی و روش جایگزینی حلال و ارزیابی ویژگی‌های فیزیکی‌ شیمیایی، رئولوژیکی، آنتی اکسیدانی و ضدباکتریایی آنها

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی شیمی-صنایع غذایی ، دانشکده مهندسی شیمی، دانشگاه صنعتی سهند تبریز

چکیده

زمینه مطالعاتی: کورکومین به عنوان رنگدانه طبیعی موجود در زردچوبه دارای خواص منحصر به فردی می­باشد که قابلیت استفاده از آن در فرمولاسیون­های غذایی و دارویی را افزایش داده است. حلالیت پایین این ماده در سیستم­های آبی از محدودیت­های اصلی کاربرد کورکومین می­باشد. هدف: هدف از تحقیق حاضر تولید نانودیسپرسیون کورکومین در آب برای افزایش حلالیت آن می­باشد. روش کار: نانودیسپرسیون کورکومینتوسط روش نوین آب مادون بحرانی و روش متداول جایگزینی حلال بر پایه اتیل­استات و با استفاده از امولسیفایر تویین20 تولید و ویژگی­های فیزیکی­شیمیایی، رئولوژیکی، پایداری فیزیکی، ضدمیکروبی و آنتی اکسیدانی نانودیسپرسیون­های تولیدی با هم مقایسه گردید. نتایج: نتایج آنالیز پراکندگی نور دینامیکی نشان داد که نانودیسپرسیون کورکومین تولیدی توسط روش نوین استفاده از آب مادون بحرانی دارای کمترین اندازه ذره (nm 1/10) و شاخص پراکندگی (06/0) و بیشترین قابلیت هدایت (ms/cm 401/0) و مقدار پتانسیل زتا (mV 8/15-) در مقایسه با روش جایگزینی حلال می­باشد. نتایج حاصل همچنین نشان داد که نانودیسپرسیون کورکومین حاصل با روش نوین آب مادون بحرانی رنگ زرد روشن (55/2=b) با کدورت کمتر (NTU 063/0) و ویسکوزیته پایین در مقایسه با خواص مذکور نانودیسپرسیون کورکومین تولیدی با روش جایگزینی حلال است. نتیجه­گیری نهایی:  نانودیسپرسیون تولید شده با  روش آب مادون بحرانی دارای بالاترین خاصیت آنتی اکسیدانی در مقایسه با محلول کورکومین در آب و خاصیت ضدباکتریایی در برابر باکتری­های گرم مثبت و گرم منفی می­باشد. علاوه بر این نانودیسپرسیون تولیدی با روش نوین یعنی آب مادون بحرانی، دارای پایداری فیزیکی در ظرف مدت زمان سه ماه می­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Curcumin nanodispersion preparation using subcritical water and solvent displacement methods and evaluation of their physical-chemical, rheological, antioxidant and anti-bacterial properties

نویسندگان [English]

  • Z Sayyar
  • H Jafarizadeh-Malmiri
چکیده [English]

حسن­فامیان ف و پزشکی نجف­آبادی الف، 1396. تولید نانوامولسیون حاوی لینولئیک اسیدکونژوگه (CLA) به روش تشکیل خود به خودی و غنی­سازی شیر کم چرب پاستوریزه با آن. نشریه پژوهش­های صنایع غذایی 27(4) 135-145.
عطای صالحی الف و سلیمانپور تمام ن، 1398. بررسی اثر آنتی‌اکسیدانی اسانس پونه کوهی بر پایداری اکسایشی روغن سرخ کردنی، نشریه پژوهش­های صنایع غذایی 29(3) 1-11.
Abdullaev F, and Espinosa-Aguirre J, 2004. Biomedical properties of saffron and its potential use in cancer therapy and chemoprevention trials. Cancer Detection and prevention 28: 426-432.
Anarjan N, Jaberi N, Yeganeh-Zare S, Banafshehchin E, Rahimirad A and Jafarizadeh-Malmiri H, 2014. Optimization of mixing parameters for α-Tocopherol nanodispersions prepared using solvent displacement method. Journal of the American Oil Chemists' Society 91: 1397-1405.
Anarjan N and Tan C P, 2013. Physico-chemical stability of astaxanthin nanodispersions prepared
with polysaccharides as stabilizing agents. International Journal of Food Science Nutrient, 64: 744–748.
Anarjan N, Tan C P, Nehdi I A and Ling, T C, 2012. Colloidal astaxanthin: Preparation, characterisation and bioavailability evaluation. Food Chemistry, 135: 1303-1309.
Anton N, Gayet P, Benoit J P, and Saulnier P, 2007. Nano-emulsions and nanocapsules by the PIT method: an investigation on the role of the temperature cycling on the emulsion phase inversion International Journal of Pharmaceutics 344: 44-52.  
Anuchapreeda S, Fukumori Y, Okonogi S, andvIchikawa H, 2011. Preparation of lipid nanoemulsions incorporating curcumin for cancer therapy. Journal of Nanotechnology 20: 1-12.                
Brand-Williams W, Cuvelier M-E, and Berset C, 1995. Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 28: 25-30.                    
Fatouros D G, Deen G R, Arleth L, Bergenstahl B, Nielsen F S, Pedersen J S, and Mullertz A, 2007. Structural development of self nano emulsifying drug delivery systems (SNEDDS) during in vitro lipid digestion monitored by small-angle X-ray scattering. Pharmaceutical Research 24: 1844-1853.                      
Pan K, Zhong Q, and Baek S J, 2013. Enhanced dispersibility and bioactivity of curcumin by encapsulation in casein nanocapsules. Journal of Agricultural and Food Chemistry 61: 6036-6043.                
Prasad S, Tyagi A K, and Aggarwal B, 2014. Recent developments in delivery, bioavailability, absorption and metabolism of curcumin. Cancer Research and Treatment 46: 2-18.         
Ravber M, Knez Z, and Skerget M, 2015. Simultaneous extraction of oil-and water-soluble phase from sunflower seeds with subcritical water. Food Chemistry 166: 316-323.
Samarghandian S and A. Borji 2014. Anticarcinogenic effect of saffron (Crocus sativus L.) and its ingredients." Pharmacognosy Research 6: 99-105.
Sari T P, Mann B, Kumar R, Singh R R B, Sharma R, Bhardwaj M and Athira S, 2014. Preparation and characterization of nanoemulsion encapsulating curcumin. Food Hydrocolloids 26: 1-7.                      
Sharma N, Deshpande R D, and Sharma R K, 2013. Preparation and optimization of nanoemulsions for targeting drug delivery. International Journal of Drug Development and Research.   
Yallapu MM, Jaggi M and Chauhan S, 2013. Curcumin nanomedicine: a road to cancer therapeutics. Current Pharmaceutical Design 19: 1994-2010.
Zhang J, Bing L and Reineccius G A, 2016. Comparison of modified starch and Quillaja saponins in the formation and stabilization of flavor nanoemulsions. Food Chemistry 192: 53-59.