مدل‌سازی فرآیند خشک کردن برش‌های هلو پوشش‌ داده‌شده با صمغ‌های دانه ریحان و گزانتان با سامانه فروسرخ

نوع مقاله : مقاله پژوهشی

نویسندگان

1 عضو هیأت علمی دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران.

2 دانشجوی کارشناسی ارشد، دانشکده کشاورزی، دانشگاه بوعلی سینا، همدان، ایران

چکیده

زمینه مطالعاتی: یکی از مهمترین روش‌های فرآوری سبزی‌ها و میوه‌ها در سرتاسر جهان خشک‌کردن آنها است که باعث تسهیل حمل‌ونقل، افزایش قابلیت نگهداری و کاهش فعالیت‌های میکروبی می‌گردد. در همین راستا استفاده از تابش فروسرخ باعث افزایش سرعت خشک‌کردن، حفظ کیفیت محصول نهایی و کاهش هزینه‎های فرآیند به دلیل کاهش مصرف انرژی می‎شود. پوشش‌دهی محصولات کشاورزی قبل از فرآیند خشک‌کردن نیز باعث بهبود کیفیت ظاهری محصول، و درنتیجه افزایش مشتری‌پسندی آن می‌شود. هدف: هدف از این پژوهش استفاده از پرتوهای فروسرخ جهت تسهیل فرآیند خشک‏کردن و صمغ‌های دانه ریحان و گزانتان جهت پوشش‌دهی و افزایش کیفیت برش‌های هلو هنگام خشک‌کردن، و بررسی سینتیک خشک شدن نمونه‌ها است. روش کار: در این مطالعه اثر متغیرهای پوشش‌دهی (شاهد، ریحان و گزانتان) و توان لامپ فروسرخ (150، 250 و 375 وات) بر زمان خشک شدن و محتوای رطوبت نمونه‌ها در سه تکرار مورد بررسی قرار گرفت. غلظت صمغ‌های استفاده شده 6/0 درصد (وزنی/وزنی)، ضخامت برش‌های هلو 5/0 سانتی‌متر و فاصله نمونه‌ها از لامپ برابر 10 سانتی‌متر در نظر گرفته شد. نتایج: نتایج نشان داد که با افزایش توان لامپ زمان خشک‌کردن کاهش می‌یابد. پیش تیمار پوشش‌دهی باعث افزایش زمان خشک‌کردن نمونه‌ها شد که زمان خشک شدن نمونه‌های پوشش داده‌شده با صمغ دانه ریحان طولانی‌تر بود. میانگین زمان خشک شدن نمونه‌های شاهد، پوشش داده‌شده با صمغ‌های ریحان و گزانتان به ترتیب برابر 78/52 دقیقه، 22/76 دقیقه و 00/62 دقیقه بود. این فرآیند توسط یک شبکه عصبی مصنوعی با 3 ورودی (زمان پرتودهی، نوع پوشش و توان لامپ پرتودهی) و 1 خروجی (محتوای رطوبت) مدل‌سازی شد. نتیجه‌گیری نهایی: بر اساس تحلیل‌های صورت گرفته روی داده‌های مدل‌سازی با استفاده از نرم‌افزار شبکه عصبی نروسولوشن، شبکه عصبی مصنوعی پرسپترون انتشار برگشتی با ساختار 1-7-3، با ضریب همبستگی 999/0 و مقدار میانگین مربعات خطای 3123/0 مناسب‌ترین شبکه برای تخمین محتوای رطوبت هلو پوشش داده‌شده هنگام خشک شدن درون خشک‌کن فروسرخ بود.

کلیدواژه‌ها


عنوان مقاله [English]

Drying process modeling of peach slices coated with basil seed and xanthan gums by infrared system

نویسندگان [English]

  • Fakhreddin Salehi 1
  • Maryam Satorabi 2
1 Faculty member, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran.
2 MSc Student, Faculty of Agriculture, Bu-Ali Sina University, Hamedan, Iran
چکیده [English]

Introduction:
One of the ways to reduce the drying time is to supply heat by infrared radiation. Infrared technique could be used as a substitution to the current drying techniques for manufacture a high quality dried hydrocolloids. Infrared technique has many advantages such as: high heat transfer rate, uniform heating, low processing time, high performance (80-90%), lower energy utilization, lower energy costs, and improving final products quality (Aktaş et al. 2017; Salehi 2020b). Edible coating applied to food slices prior to drying is a technology that can improve the nutritional and sensory qualities of dehydrated products. The edible coatings have been widely studied aiming to increase shelf life of minimally processed products and reduce the solids uptake during osmotic dehydration. Polysaccharide edible coatings present low water vapor barrier; however, they present good gas barrier properties, such as oxygen barrier, and could be used to minimize oxidative reactions in food during drying, pointing out the potential of using edible coatings prior to convective drying, since it could reduce undesirable changes due to large time of exposure of the food to oxygen (Fakhouri et al. 2007; Garcia et al. 2014; Salehi 2021; Satorabi et al. 2021). The performance of artificial neural networks (ANN) as an analytical alternative to conventional modeling techniques was reported by some researcher. They reported that this approach is able to estimated drying kinetics of various fruits and vegetables with high precision. It has been shown that nonlinear approaches based on ANN are far better in generalization and estimation in comparison to empirical models (Bahramparvar et al. 2014; Zhang et al. 2014; Salehi 2020a). In this study, basil seed and xanthan gums were used to coating of peach slices during drying in the infrared system and the drying kinetics of the samples were investigated.
Material and methods:
Slices of peach (5 mm thick) were prepared with the aid of a cutter and a steel-made cutting tool, which was cylindrical in shape and pointed on one of the sides. Basil seeds was physically cleaned and all foreign stuffs were removed. Then, the pure basil seeds were immersed in water for 20 min at a seed/water relation of 1:20 at 25°C. In the next step, the gum was separated from the inflated seeds by passing the seeds through an extractor (Bellanzo BFP-1540 Juicer, China) with a rotating disc which scratches the mucilage layer on the seed surface. The initial moisture content (MC) of the basil seed gum was 99.4% (wet basis). Xanthan and basil seed gums were used to coat the fresh peach slices. A 0.6% (w/w) xanthan and basil seed gums solution were prepared at 25°C and then peach slices were immersed for 1 min in a aqueous solution. The coated peach slices were dried in an infrared dryer (infrared radiation lamp (NIR), Noor Lamp Company, Iran). The influence of infrared radiation power (at three levels 150, 250 and 375 W), and time (min) on drying kinetics of peach slices was examined. The weight changes of peach slices was measured by using Lutron GM-300p digital balance (Taiwan, the sensitivity of ±0.01 gr). All measurements were done in triplicate. In this study, the Neurosolution software (release 5, NeuroDimension, Inc., USA) was employed for making the ANN model. The experimental data order was first randomized and then total data were randomly separated into 3 partitions: training (20%), validating (20%), and testing data (60%). The testing data were used for prediction of the trained network performance on unseen data. In the hidden layers and output layer a hyperbolic tangent activation function was used. The Levenberg–Marquardt (LM) optimization method was applied to network training. Also, a sensitivity analysis was done to supply the measure of relative significance between the inputs of the ANN model and to show how the model output changed in response to input changes.
Results and discussion:
Fruits and vegetables drying is a commonly used process for improving product safety as it greatly decreases the microbial activity and enzymatic changes during the storage period, hence, increasing the shelf life of the product. In this study, the effect of coating variables (control, basil and xanthan) and infrared lamp power (150, 250 and 375 W) on drying time and moisture content of samples in three replications were investigated. The concentration of used gum was 0.6% (w/w), the thickness of peach slices were 0.5 cm, and the distance of samples from lamp were 10 cm. The results of peach samples drying by infrared method showed that with increase in lamps power the drying time decreases. Coating pretreatment increased the drying time of peaches and the drying time of samples coated with basil seed gum was longer. The average drying time of the control samples, coated with basil and xanthan gums was 52.78 min, 76.22 min and 62.00 min, respectively. This process was modeled by an artificial neural network with 3 inputs (radiation time, type of coating and radiation lamp power) and 1 output (moisture content). The results of artificial neural network modeling showed that the network with 7 neurons in a hidden layer and using the Hyperbolic tangent activation function can predict the moisture content of coated peach during drying using infrared dryer (r=0.999). Also, the values of mean squared error (MSE), normalized mean squared error (NMSE) and mean absolute error (MAE) for optimum network were 0.3123, 0.0004 and 0.4065, respectively.
Conclusion:
Polysaccharide-based edible coating can be useful as a pretreatment for drying, since they prevents the oxidation of nutritional compounds, thereby improving the quality of the dried product. In this study, the effects of polysaccharide coating (xanthan and basil seed gums) on the drying kinetics of peach slices were investigated. In addition, artificial neural network model was used for prediction of moisture content of coated peach slices in an infrared dryer. With increasing infrared intensity, due to the increase in peach slices temperature and increasing evaporation rate and the decrease in drying time, the specific energy for drying of peach slices decreases. The results of this study indicated that ANN approach could give good estimation of moisture content of coated peach slices by xanthan and basil seed gums during infrared drying.

کلیدواژه‌ها [English]

  • Artificial neural network
  • Drying
  • Infrared radiation
  • Moisture content
خاکباز‌حشمتی م و سیفی‌مقدم ا، 1396، بررسی تکنیک متناوب مایکروویو- هوای گرم بر خواص کیفی و تغذیه‌ای برگه‌های کیوی خشک‌شده. پژوهش‌های صنایع غذایی، 27(1)، 126-111.
دهقانی‌خیاوی ه، خاکبازحشمتی م، دهقان‌نیا ج و باغبان ح، 1399، کاربرد روش‌های هیبریدی (هوای داغ- مایکروویو- مادون‌قرمز) جهت خشک‌کردن سیب‌زمینی و مطالعه ویژگی‌های کیفی محصول خشک‌شده. پژوهش‌های صنایع غذایی، 30(2)، 161-143.
عسگری‌ورجانی س، صالحی‌فر م و شهریاری ش، 1400، ارزیابی اثر ضد‌اکسایشی و ضد‌میکروبی صمغ دانه ریحان و اسانس پونه کوهی در ماندگاری کیک شکلاتی کم‌چرب. پژوهش‌های صنایع غذایی، 31(1)، 31-17.
Amini G, Salehi F and Rasouli M, 2020. Drying process modeling of basil seed mucilage by infrared dryer using artificial neural network. Journal of Food Science and Technology (Iran) 17(106): 23-31.
Amini G, Salehi F and Rasouli M, 2021. Drying kinetics of basil seed mucilage in an infrared dryer: Application of GA-ANN and ANFIS for the prediction of drying time and moisture ratio. Journal of Food Processing and Preservation 45(3): e15258.
Doymaz İ, 2004. Effect of pre-treatments using potassium metabisulphide and alkaline ethyl oleate on the drying kinetics of apricots. Biosystems Engineering 89(3): 281-287.
Fakhouri FM, Fontes LCB, Gonçalves PVdM, Milanez CR, Steel CJ and Collares-Queiroz FP, 2007. Filmes e coberturas comestíveis compostas à base de amidos nativos e gelatina na conservação e aceitação sensorial de uvas Crimson. Food science and technology 27(2): 369-375.
Garcia CC, Caetano LC, de Souza Silva K and Mauro MA, 2014. Influence of Edible Coating on the Drying and Quality of Papaya (Carica papaya). Food and Bioprocess Technology 7(10): 2828-2839.
Hebbar H U, Vishwanathan K and Ramesh M, 2004. Development of combined infrared and hot air dryer for vegetables, Journal of Food Engineering 65: 557-563.
Hosseini Ghaboos SH, 2016. Production of pumpkin powder with vacuum-infrared system and its use in the formulation of spong cake, Food science and technology. Islamic Azad University, Science and Research Brach, Tehran, p. 122.
Jun S, Krishnamurthy K, Irudayaraj J and Demirci A, 2011. Fundamentals and theory of infrared radiation. In: Pan, Z. Atungulu, G. G. (Eds.). Infrared heating for food and agricultural processing. New York. CRC press, 1-18.
Kingsly RP, Goyal RK, Manikantan MR and Ilyas SM, 2007. Effects of pretreatments and drying air temperature on drying behaviour of peach slice. International Journal of Food Science & Technology 42(1): 65-69.
Krishnamurthy K. Kaur Khurana H. Jun S. Irudayaraj J and Demirci A, 2008. Infrared Heating in Food Processing: An Overview. Comprehensive Reviews in Food Science and Food Safety 7: 2-13.
Salehi F, 2020a. Recent advances in the modeling and predicting quality parameters of fruits and vegetables during postharvest storage: A review. International Journal of Fruit Science 20(3): 506-520.
Salehi F, 2020b. Recent applications and potential of infrared dryer systems for drying various agricultural products: A review. International Journal of Fruit Science 20(3): 586-602.
Salehi F, 2020c. Edible coating of fruits and vegetables using natural gums: A review. International Journal of Fruit Science 20 (S2): S570-S589.
Salehi F, 2021. Recent applications of heat pump dryer for drying of fruit crops: A review. International Journal of Fruit Science 21 (1): 546-555.
Satorabi M, Salehi F and Rasouli M, 2021. The influence of xanthan and balangu seed gums coats on the kinetics of infrared drying of apricot slices: GA-ANN and ANFIS Modeling. International Journal of Fruit Science 21(1): 468-480.
Sharma GP, Verma RC and Pathare P B. 2005. Mathematical modeling of infrared radiation thin layer drying of onion slices. Journal of Food Engineering 71: 282–286.
Shayan T, Hakimzadeh V and Shahidi Noghabi M, 2019. Modeling the efficiency of ultrafiltration process in purification of microfiltered raw sugar beet juice by artificial neural network. Iranian Journal of Food Science and Technology 16 (88):17-26.
Zhang Y, Wang S, Ji G and Phillips P, 2014. Fruit classification using computer vision and feed-forward neural network. Journal of Food Engineering 143: 167-177.