تاثیر پروتئین‏های آلبومین، سدیم کازئینات، کنسانتره آب پنیر و ژلاتین بر ریز ساختار موس شکلاتی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 1 دانش آموخته کارشناسی ارشد، تکنولوژی علوم و صنایع غذایی، دانشگاه فردوسی مشهد

2 2 دانشیار گروه علوم و صنایع غذایی، دانشگاه فردوسی مشهد

3 3 استاد گروه علوم و صنایع غذایی، دانشگاه فردوسی مشهد

4 دانشیار گروه علوم و صنایع غذایی، دانشگاه فردوسی مشهد

چکیده

دسرهای لبنی بر پایه سیستم کف بازارپسندی خوبی دارند. موس، دسر هوا داده شده با ساختار کفی پایدار می‏باشد. در این پژوهش تاثیر مقادیر مختلف پروتئین‏های آلبومین، سدیم کازئینات، کنسانتره آب پنیر و ژلاتین بر ویژگی‏های بافتی (سفتی و مقاومت به خرد شدگی) و ریز ساختار ( قطر معادل و توزیع اندازه حباب) موس شکلاتی بررسی شد. نتایج نشان داد توزیع اندازه حباب به نحوی بود که نمونه‏های تولیدی حاوی آلبومین بیشترین تعداد حباب را در بخش کمتر از  5 پیکسل داشتند و بخش بزرگتر از 20 پیکسل سهم جزئی تری در تشکیل ریز ساختار موس شکلات داشت، همچین نمونه‏های تولیدی حاوی ژلاتین بالا، سهم کمتری را در بخش بزرگتر از 20 پیکسل داشتند. قطر معادل حباب نیز  با گذشت زمان افزایش یافت که این افزایش در نمونه‏های حاوی آلبومین و ژلاتین بالا کمتر بود. به طور کلی افزایش غلظت پروتئین سبب کاهش قطر معادل حباب گردید. میزان سفتی در نمونه‏هایی که حاوی مقادیر بالاتر ژلاتین بودند بیشتر بود اما نیروی شکست نمونه‏ها اختلاف معنی داری نداشت.

 
 
 

کلیدواژه‌ها


عنوان مقاله [English]

Effect of proteins albumin, sodium caseinate, whey protein concentrate and gelatin on microstructure and texture of chocolate mousse

نویسندگان [English]

  • s mirarab 1
  • m mohebbi 2
  • mh hadad 3
  • a kucheki 4
1 1
2 2
3 3
رضایی ر، شهیدی ف، الهی م، محبی م، و نصیری محلاتی م، 1390، آنالیز پروفایل بافت پاستیل آلو به روش حسی و دستگاهی و بهینه سازی فرمولاسیون آن، نشریه پژوهش‏های علوم و صنایع غذایی ایران، جلد 8، 39-30.
Aguilera JM, and Lillford PJ, 2008. Food Materials Science. Springer 169-203.
 
Barik T K, and Roy A, 2009. Statistical distribution of bubble size in wet foam. Chemical Engineering Science 64: 2039-2043.
Boland AB, Buhr K, Giannouli P, and Van Ruth, S M, 2004. Influence of gelatin, starch, pectin and artificial saliva on the release of 11 flavour compounds from model gel systems. Food Chemistry 86(3): 401-411.
Liping D, Yuqing D, Ales P, and Robert DT, 2001. Measurement of bubble size distribution in protein foam fractionation column Using capillary probe with photoelectric sensors. Applied Biochemistry and Biotechnology 91–93.
Germain JC, and Aguilera JM, 2012. Identifying industrial food foam structures by 2D surface image analysis and pattern recognition. Journal of Food Engineering 111: 440–448.
Guillén GMC, Giménez B, López-Caballero, M E, and Montero MP, 2011. Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids 25: 1813-1827.
 
Haedelt J, Beckett S T, and Niranjan K, 2007. Bubble-included chocolate:relating structure with sensory response. Journal of Food Science Vol. 72, Nr. 3:138-142.
Indrawati L, Wang Z, Narsimhan G, and Gonzalez J, 2008. Effect of processing parameters on foam formation using a continuous system with a mechanical whipper. Journal of Food Engineering 88: 65–74.
Kilcast D, and Clegg S, 2002. Sensory perception of creaminess and its relationship with food structure. Food Quality and Preference 13: 609–623.
Marinova KG, Basheva ES, Nenova B, Temelska M, Mirarefi AY, Campbell B, and Ivanov I B, 2009. Physico-chemical factors controlling the foamability and foam stability of milk proteins: Sodium caseinate and whey protein concentrates. Food Hydrocolloids 23: 1864–1876.
Muller Fischer N, and Windhab E J, 2005. Influence of process parameters on microstructure of food foam whipped in a rotor–stator device within a wide static pressure range. Colloids and Surfaces A: Physicochem. Eng. Aspects 263, 353–362.
Narchi I, Vial C, and Djelveh G, 2007. Influence of bulk and interfacial properties and operating conditions on continuous foaming operation applied to model media. Food Research International 40: 1069–1079.
Patino RJM, Naranjo Delgado MD, and Linares Fernfindez JA, 1995. Stability and mechanical strength of aqueous foams containing food proteins. Colloids and Surfaces A: Physicochemical and Engineering Aspects 99: 65-78.
Singh H, 2011. Aspects of milk-protein-stabilised emulsions. Food Hydrocolloids, 25: 1938-1944.
Yang X, and Foegeding EA, 2011. The stability and physical properties of egg white and whey protein foams explained based on microstructure and interfacial properties. Food Hydrocolloids 25: 1687-1701.
Zuniga RN, and Aguilera JM, 2008. Aerated food gels:fabrication and potential applications. Trends in Food Science and Technology 19: 176-187.