اثر امواج مایکروویو روی باقیمانده آفت‌کش و ویژگی‌های فیزیکوشیمایی و میکروبی میوه خشک شده زردآلو طی زمان نگهداری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 ﮔﺮوه ﻋﻠﻮم و ﺻﻨﺎﻳﻊ ﻏﺬاﻳﻲ، داﻧﺸﮕﺎه ﻋﻠﻮم ﻛﺸﺎورزی و ﻣﻨﺎﺑﻊ ﻃﺒﻴﻌﻲ ﺳﺎری، ﺳﺎری، اﻳﺮان

2 مدیر گروه علوم و صنایع غذایی دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 دانشگاه علوم کشاورزی و منابع طبیعی ساری

4 گروه علوم و صنایع غذایی،دانشکده تغذیه و صنایع غذایی، دانشگاه علوم پزشکی کرمانشاه، کرمانشاه،

چکیده

زمینه مطالعاتی: کاهش باقیمانده آفت‌کش‌ها با بهبود کیفیت مواد غذایی و سلامت انسان همراه است. هدف: در این مطالعه، اثر امواج مایکروویو روی میزان باقیمانده آفت‌کش اورتوساید (با نام تجاری کاپتان) در زردآلوی خشک شده بررسی شد. روش کار: آفت‌کش‌ کاپتان در سطوح 25، 50 و 75 پی‌پی‌بی در قالب طرح کاملاً تصادفی با آزمایش فاکتوریل به میوه‌های خشک شده ارگانیک زردآلو رقم نصیری تلقیح شدند و سپس میزان باقیمانده آفت‌کش نمونه‌های تلقیح شده، پس از پرتودهی با امواج مایکروویو (زمان‌های 5/2 و 5 دقیقه) طی 2 ماه نگهداری تعیین شد. هم‌چنین، ویژگی‌های فیزیکوشیمیایی و میکروبی، رنگ و فعالیت آنتی‌اکسیدانی در نمونه‌های بدون تلقیح آفت‌کش پس از پرتودهی با امواج مایکروویو در زمان‌های متفاوت نگهداری (صفر، 30 و 60 روز) اندازه گیری شدند. نتایج: امواج مایکروویو سبب کاهش معنی‌دار میزان باقی‌مانده‌ آفت‌کش در همه سطوح تلقیح نسبت به نمونه‌ کنترل شد (05/0>p). علاوه بر این، افزایش مدت زمان نگهداری نیز اثر معنی‌داری بر کاهش میزان آفت‌کش داشت. همچنین، امواج مایکروویو موجب افزایش میزان ترکیبات فنولی، فعالیت آنتی‌اکسیدانی، میزان خاکستر و قند احیا و نیز کاهش میزان رطوبت نمونه‌ها شدند (05/0>p). امواج مایکروویو تعداد کلی میکروارگانیسم‌ها و تعداد کپک و مخمر نمونه‌ها را در مقایسه با نمونه کنترل به طور معنی‌داری کاهش دادند. از طرفی، امواج مایکروویو موجب کاهش فاکتور L* (روشنی) و نیز افزایش فاکتور a* (قرمزی) و b* (زردی) نمونه‌ها شد (05/0>p). نتیجه گیری نهایی: زمان 5 دقیقه تیمار با امواج مایکروویو در مقایسه با زمان 5/2 دقیقه با تغییرات بیشتری در همه پارامترهای اندازه گیری شده همراه بود ودر کاهش باقیمانده آفت‌کش کارایی بالاتری داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Effect of Microwave Irradiation on Pesticides Residues and Physiochemical and Microbial Properties of Dried Apricots during Storage Time

نویسندگان [English]

  • Somayeh Solaimani mehr 1
  • Zaynab Raftani Amiri 2
  • reza Esmaeilzadeh kenari 3
  • Ehsan Sadeghi 4
1 Department of Food Science and Technology, Sari Agricultural Sciences and Natural Resources University, Sari
2 Head of Deot. of Food Science & Tech., Sari Agricultural Sciences and Natural Resources University
3 sari agricultural sciences and natural resources university(SANRU)
4 Department of Food Science and Technology, Faculty of Nutrition and Food Technology, Kermanshah University of Medical Sciences, Kermanshah
چکیده [English]

Introduction: The use of pesticides has increased considerably for crop production in recent years. Despite advantageous properties of pesticides for controlling different pests and preventing diseases, they have many negative effects on humans and environment. Different methods have been proposed to reduce the effects of pesticides on fresh and dried foods, including washing, storage, peeling, heating, boiling, frying and bleaching, canning, freezing, etc, but they don't have enough ability in this regard (Ali Mohammadi and Jihadi 2014). For these reasons, efficient and novel methods such as microwave irradiation have received great attention to decrease residues of pesticides in vegetables and fruits. Reducing their residues can be effective in improving the quality of foods and human health (Guillet et al 2009, Kaushik et al 2016). Iran is the third largest producer of apricot in the world. Dried apricot has many nutritional and health benefits and is considered as healthy choice (Wani et al. 2017). In the present study, effect of microwave irradiation was evaluated on residues of Orthocide (trade name: captan) pesticide and physicochemical properties of dried apricots during storage.
Materials and methods: Apricot fruits (Nasiri variety) were provided by agricultural jihad organization of Kermanshah province and were dried (Hussain et al. 2010). Then, Orthocide (trade name: captan) pesticide in three levels of 25, 50 and 75 ppb (μg/ kg) were inoculated to organic dried apricots. In the next stage, inoculated samples were subjected to microwave irradiation (2.5 and 5 min) and pesticide residues were determined after irradiation during two months of storage (Cieslik et al. 2011, Seid Mohammadi et al. 2012). Also, a series of samples without any pesticide inoculation were irradiated with microwave (2.5 and 5 min) and were evaluated in terms of ash content (AOAC 2005, 940.26), moisture content (AOAC 2005, 934.06), total phenolic content (Arabshahi and Urooj 2007), reducing sugar content (AOAC, 2005, 925.36), total microbial count, mold and yeast counts (Rahman et al. 2011), color (parameters of L*, b* and a*) (Basaran and Akhan 2010) and antioxidant activity (Arabshahi and Urooj 2007) in different storage times (0, 30 and 60 days). Obtained data were analyzed by repeated measure design and factorial design using analysis of variance (ANOVA) and least square means in significance level of 0.05 (p < 0.05).
Results and discussion: The results showed that microwave irradiation caused a significant decrease in pesticide residues of dried apricot in all levels of pesticide inoculation (5.05-26.07 %) compared to control sample. This reduction can be attributed to existence hot spots and non-thermal effects of microwave (Sajjadi et al. 2016). In addition, increase of storage time had significant effect on reduction of pesticide residues (p < 0.05). Overall, the highest reduction amount in pesticide residues (26.07 %) was related to samples treated with microwave radiation for 5 min at zero time (Table 2). In accordance with our results, residue of cypermethrin pesticide in brinjal reduced after processing with microwave (Walia et al. 2010). Microwave radiation also led to an increase in the content of phenolic compounds and antioxidant activity (Figures 2 and 3) which may be associated with breakdown of covalent bonds between phenolic compounds and other components (such as protein and sugar) by microwave, increasing extraction efficiency of phenolic compounds and therefore antioxidant activity (Hayat et al. 2010a). Similar results have been reported by Igual et al (2010). Moreover, ash and reducing sugar contents of samples increased by microwave but a significant decrease was observed in the moisture content of dried apricot (p < 0.05). Microwave radiation could significantly diminish total microbial count and mold and yeast counts compared to control sample. This can be justified by thermal and non-thermal effects of microwave on microorganisms (Heddleson and doores 1994, Kozempel et al. 1998). The lowest microbial count (2.39 log CFU/g) was related to samples treated with microwave for 5 min at zero time. Similarly, microbial load of saffron samples decreased after microwave irradiation (Hosseini Nejad et al. 2003). Also, irradiation with microwave led to a decrease in L* factor and an increase in a* (redness) and b* (yellowness) factors of samples (p < 0.05). The least color changes were found in samples irradiated with microwave for 2.5 min (Table 5). Color changes can be attributed to the degradation of vitamin C, carotenoids and other pigments due to heating effect of microwave and environmental factors. Also, loss in moisture content may be effective in making these changes. Similar results have been reported by Jogihalli et al (2017) for chickpea.
Conclusion: Microwave irradiation for 5 min resulted in more changes in determined parameters in comparison with 2.5 min of irradiation time and was more effective in reducing pesticide residues of dried apricot. Therefore, microwave irradiation can be considered as appropriate and promising way to decrease pesticides residues in fruits and vegetables.

کلیدواژه‌ها [English]

  • Antioxidant activity
  • Dried apricot
  • Microwave radiation
  • Pesticide residue
  • Storage time
اکبریان میمند م ج، فرجی کفشگری، س، محمودی ا و وطن خواه م، 1394.  تأثیر استفاده از پیش تیمار مایکروویو در خشک کردن ریشه جوز هندی بر خاصیت ضدمیکروبی آن در مقابله با باکتری‌های بیماریزا و کپک‌های عامل فساد. مجله میکروب شناسی پزشکی ایران، (2)9، 47-55.
آذر پژوه ا و نیکخواه ش، 1387.  اثر تابش مایکروویو و بر خصوصیات کیفی و پوسیدگی میوه هل و در سردخانه. پژوهش و سازندگی در زراعت و باغبانی، 21(4)، 160-169.
تربتی م ع، جوادی ا، صادری ح و توکلی  ف، 1390. مطالعه اثر روش‌های پخت مایکروویو و سرخ کردن بر روی ویژگی‌های میکروبی همبرگر. مجله بهداشت مواد غذایی، 1(3)، 47-53.
حسینی نژاد م، شهیدی ف و ملک زاده غ ر، 1381. ارزیابی ویژگیهای کیفی و میزان آلودگی میکروبی نمونه‌های زعفران خشک شده به روش مایکروویو. علوم و صنایع کشاورزی، 16(2)، 51-57.
خوشخوی م، شیبانی ب، روحانی ا و تفضلی ع، 1387. اصول باغبانی. چاپ هفدهم، مرکز نشر دانشگاه شیراز.
راحمی م و زارع ح، 1381. تأثیر نوع بسته بندی و دماهای مختلف ضدعفونی و نگهداری انجیر خشک استهبان. علوم و فنون کشاورزی و منابع طبیعی، 6(2)، 29-40.
رسولیان شبستری ر، امینی فر م و رشیدی ل، 1396. بررسی اثر دو روش حرارتی تغلیظ، تبخیرکننده­ چرخشی و مایکروویو بر میزان ترکیبات فنلی، فعالیت آنتی­اکسیدانی و رنگ کنسانتره آب گریپ فروت. مجله علوم تغذیه و صنایع غذایی ایران، 3، 47-54.
صالحی, ف. 1396. مدل‌سازی افت وزن زردآلو طی خشک‌کردن با خشک‌کن فروسرخ به روش بهینه‌سازی الگوریتم ژنتیک- شبکه عصبی مصنوعی. پژوهش های صنایع غذایی، 29(1)، 55-69.
علی­محمدی ل و جهادی م، 1392. اثر فرآیندها بر باقی­مانده آفت­کش­ها در مواد غذایی (میوه­ها و سبزیجات). کنفرانس علوم کشاورزی و محیط زیست، شیراز.
عین افشار س، 1385. مقایسه آلودگی زدایی خشکبار (آلو، کشمش و برگه) به دور وش مایکروویو و گوگرد زنی. مجله تحقیقات مهندسی کشاورزی، 7(28)، 1-12.
محمد رزداری آ، یوسفیان س ه، کیانی ح و سیحون م، 1395.  بررسى تأثیر پیش تیمار پرتودهى گاما بر برخى ویژگى‌هاى کیفى و رئولوژیکى غده سیب زمینى. فصلنامه فناوری‌های نوین غذایی، 3(12)، 65-75.
AOAC, 2005. Official methods of Analysis of the AOAC. Association of Official Analytical Chemists Inc.
Arabshahi S and Urooj A, 2007. Antioxidant properties of various solvent extracts of mulberry (Morus indica L.) leaves. Food Chemistry 102:1233-1240.
Barros FCF, Barros AL, Silva MAA and Nascimento RFD, 2013.Use of microwave-assisted oxidation for removal of the pesticide Chlorpyrifos from aqueous media. International Journal of Civil & Environmental Engineering 13:16-27.
Basaran P and Akhan U. 2010, Microwave irradiation of hazelnuts for the control of aflatoxin producing Aspergillus parasiticus. Innovative Food Science and Emerging Technologies 11: 113-117.
Brar GS, Patyal SK and Banshtu T. 2017, Effect of household processing on reduction of acephate, profenofos and triazophos residues in brinjal. International Journal of Pure & Applied Bioscience 5 (4): 123-130.
Cañumir JA, Celis JE, de Bruijn J and Vidal LV, 2002. Pasteurisation of apple juice by using microwaves. LWT-Food Science and Technology 35(5): 389-392.
Cieslik E, adowska-Rociek A, Ruiz JMM and Surma-Zadora M, 2011. Evaluation of QuEChERS method for the determination of organ chlorine pesticide residues in selected group of fruits, Food Chemistry 125: 773-778.
Costa de Camargo A, Regitano-d’Arce MAB, Gallo CR and Shahidi F, 2015. Gamma-irradiation induced changes in microbiological status, phenolic profile and antioxidant activity of peanut skin. Journal of Functional Foods 12: 129-143.
Dahmounea F, Boulekbachea L, Moussia K, Aouna O, Spignob G and Madania K, 2013. Valorization of Citrus limon residues for the recovery of antioxidants:Evaluation and optimization of microwave and ultrasound applicationto solvent extraction. Industrial Crops and Products 50:77– 87.
Das C, Mishra H. N., 2000. Effect of aflatoxin B1 detoxification on the physicochemical properties and quality of ground nut meal. Food Chemistry 70: 483-487.
Guan D, Gray P, Kang DH, Tang J, Shafer B, Ito K, Younce F and Yang TCS. 2003. Microbiological validation of microwave-circulated water combination heating technology by inoculated pack studies. Food Microbiology and Saftey 68 (4): 1428-1432.
Guillet V, Fave C and Montury M, 2009. Microwave/SPME method to quantify pesticide residues in tomato fruits. Journal of Enviromental Science and Health B 44(5):415-22.
Hayat K, Zhang X, Chenc H, Xia S, Jia C and Zhong F, 2010a. Liberation and separation of phenolic compounds from citrus mandarin peels by microwave heating and its effect on antioxidant activity. Separation and Purification Technology 73: 371–376.
Hayat K, Zhang X, Farooq U, Abbas S, Xia S, Jia C, Zhong F and Zhang J, 2010b. Effect of microwave treatment on phenolic content and antioxidant activity of citrus mandarin pomace . Food Chemistry 123:423–429.
Heddleson RA and Doores S, 1994. Factors affecting microwave heating of foods and microwave induced destruction of foodborne pathogens A Review. Journal of Food Protection 57(11): 1025-1037.
Hussain PR, Wani AM, Meena RS and Dar MA, 2010. Gamma irradiation induced enhancement of phenylalanine ammonia-lyase (PAL) and antioxidant activity in peach (Prunuspersica Bausch, CV. Elberta). Radiation Physics and Chemistry 79: 982–989.
Igual M, García-Martínez E, Camacho MM and Martínez-Navarrete N, 2010. Effect of thermal treatment and storage on the stability of organic acids and the functional value of grapefruit juice. Food Chemisty 118: 291–299.
Jamshidi M, Barzegar M and Sahari M A, 2014. Effect of gamma and microwave irradiation on antioxidant and antimicrobial activities of Cinnamomum zeylanicum and Echinacea purpurea. International Food Research Journal 21(4): 1289-1296.
Jogihalli P, Singh L and Sharanagat VS, 2017. Effect of microwave roasting parameters on functional and antioxidant properties of chickpea (Cicer arietinum). LWT- Food Science and Technology 79: 223- 233.
Kaushik G, Satya S and Naik SN, 2016. Pesticide residue dissipation upon storage and processing in chickpea legume for food safety. Advances in Food Technology and Nutritional Sciences- Open Journal 2(2): 64-72.
Keskin SO, Sumnu G and Sahin S, 2004. Bread baking in halogen lamp–microwave combination oven. Food Research International 37: 489–95.
Kim HK, Kwon YJ, Kim KH and Jeong YH, 2000. Changes of total olyphenolcontent and electron donating ability of aster glehni extracts with different microwave-assisted extraction conditions. Korean Journal of Food Science and Technology 32: 1022-28.
Kozempel MF, Annous BA, Cook RD, Scullen OJ and Whiting RC, 1998. Inactivation of microorganisms with microwave at reduced temperatures. Journal of Food Protection61(5): 582-585.
Ling B, Tiwari G and Wang S, 2015. Pest control by microwave and radio frequency energy: dielectric properties of stone fruit. Agronomy for Sustainable Development 35: 233–240.
Pérez-Flores G.C., Moreno-Martínez E., Méndez-Albores A., 2011. Effect of Microwave Heating during Alkaline-Cooking of Aflatoxin Contaminated Maize. Journal of Food Science. 76(2): 48-52.
Rahman T, Hasan S and Noor R, 2011. An assessment of microbiological quality of some commercially packed and fresh fruit juice available in Dhaka city: A comparative study. Stamford Journal of Microbiology 1:13-18.
Ravichandran K, Ahmed AR, Knorr D and Smetanska I, 2012. The effect of different processing methods on phenolic acid content and antioxidant activity of red beet. Food Research International 48: 16–20.
Sajadi SA, Asgari G, Biglari H and Chavoshani A, 2016.Pentachlorophenol removal by persulfate and microwave processes coupled from aqueous environments. Journal of Engineering and Applied Scineces. 11 (5): 1058-1064.
Salazar-González C, San Martín-González MF, López-Malo A and Sosa-Morales ME, 2012. Recent studies related to microwave processing of fluid foods. Food and Bioprocess Technology 5(1): 31-46.
Seid Mohammadi A, Asgari G, Ebrahimi A, SharifiZ and Movahedian Attar H, 2012. 4-Chlorophenol degradation with modified domestic microwave and hydrogen peroxide in aqueous solution. International Journal of Environmental Health Engineering 1(6): 7-11.
Uysal N, Sumnu G and Sahin S, 2009. Optimization of microwave–infrared roasting of hazelnut. Journal of Food Engineering 90: 255-61.
Vadivambal R and Jayas DS, 2010. Non-uniform temperature distribution during microwave heating of food materials-A review. Food and Bioprocess Technology 3(2):161-171.
Walia S, Boora P and Kumari B, 2010. Effect of processing on dislodging of cypermethrin residues on brinjal. Bulletin of Enviromental Contamination and Toxicology 84:465–468.
Wang S and Tang J, 2001. Radio frequency and microwave alternative treatments for insect control in nuts: a review. Agricultural engineering journal 10(3&4): 105-120.
Wani SM, Jan N, Wani TA, Ahmad M., Masoodi FA and Gani A, 2017. Optimization of antioxidant activity and total polyphenols of dried apricot fruit extracts (Prunusarmeniaca L.) using response surface methodology. Journal of the Saudi Society of Agricultural Sciences 16: 119–126.
Youn K-S and Chung H-S, 2012. Optimization of the roasting temperature and time for preparation of coffee-like maize beverage using the response surface methodology. LWT - Food Science and Technology 46: 305-310.