تهیه و شناسایی فیلم ‌نانوکامپوزیت کاراگینان/نانوکلی حاوی عصاره اسپند

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی شیمی دانشکده فنی و مهندسی دانشگاه محقق اردبیلی

2 گروه صنایع غذایی دانشگاه آزاد سراب

چکیده

زمینه مطالعاتی: افزودن عصاره اسپند می تواند منجر به بهبود خواص ضدمیکروبی و فیزیکوشیمیایی فیلم کاراگینان شود. هدف: هدف از این پژوهش تهیه فیلم‌های ضدمیکروبی بر پایه بیوپلیمرکاراگینان جهت بسته بندی فعال مواد غذایی و کاهش آلودگی محیط زیست ناشی از تجمع مواد بسته بندی سنتزی می‌باشد. روش کار: فیلم­های نانوکامپوزیت کاراگینان حاوی 3 درصد وزنی نانورس (مونتموریلونیت) وسه سطح غلظتی 1، 2 و 3 درصد عصاره اسپند با روش کستینگ تهیه شده و خواص فیزیکی، مکانیکی و ضدمیکروبی آن­ها علیه باکتری‌هایاشرشیاکلی و استافیلوکوکوس اورئوس مورد بررسی قرار گرفت. به‌منظور بررسی تغییرات حاصل از افزودن عصاره اسپند، به فیلم­های نانوکامپوزیت کاراگینان/نانوکلی تصاویر میکروسکوپ الکترونی، آنالیز وزن سنجی حرارتی، طیف نور مرئی- فرابنفش و مادون قرمز با تبدیل فوریه از فیلم‌ها تهیه گردید. نتایج: تصاویر میکروسکوپ الکترونی روبشی حاصل از فیلم‌های کاراگینان­/گلیسرول/نانورس حاوی عصاره و بدون عصاره، سطحی حاوی نانورس را نشان می‌داد که در کل فیلم پراکنده شده­ بودند. آزمون طیف­سنجی فرابنفش- مرئی نشان داد که با افزودنعصاره اسپند میزان عبور نور فرابنفش و نور مرئی فیلم کاراگینان/نانوکلی/گلیسرول کاهش می یابد. این کاهش در نمونه حاوی 3 % عصاره برای نور فرابنفش از6/2 %به 3/0 % و برای نور مرئی ازو 7/17 %به 2/9 % بوده است. بر اساس آنالیز وزن سنجی حرارتی افزودن عصاره اسپند به فیلم کاراگینان تاثیر چندانی بر پایداری حرارتی فیلم تهیه شده نداشت. استحکام کششی و ازدیاد طول فیلم کاراگینان/نانوکلی/گلیسرول بدون عصاره معادل 9/15 مگاپاسکال و 0/15 میلی‌متر بود. نتایج آزمون کشش حاکی از آن بود که وجود عصاره اسپند در زمینه پلیمری فیلم کاراگینان/نانوکلی/گلیسرول موجب افزایش تقریبا 2 برابری استحکام کششی و افزایش بیش از 3 برابری ازدیاد طول نسبت به فیلم کاراگینان/نانوکلی/گلیسرول بدون عصاره شد. در نهایت بر اساس تست های ضدمیکروبی، عصاره اسپند از مواد ضدمیکروبی مناسب برای تولید فیلم‌ها و پوشش‌های زیست‌تخریب‌پذیربرای بسته‌بندی مواد غذایی مختلف می‌باشد. نتیجه‌گیری نهایی: وجود عصاره اسپنددر زمینه پلیمری کاراگینان موجب افزایش استحکام مکانیکی، پایداری حرارتی و  خواص ضدمیکروبی فیلم کاراگینان می­شود.

کلیدواژه‌ها


عنوان مقاله [English]

Preparation and identification of carrageenan/nanoclay nanocomposite films containing Peganum harmala extract

نویسندگان [English]

  • M Ghorbanpour 1
  • A Mahini 2
دیبا ک، گرامی شعار م ، شربت خوری م و حسین پورل، 1388. بررسی میزان مهارکنندگی عصاره الکلی دانه گیاه اسپند Peganum harmala  بر رو گونه ی‌ها کاندیدا و آسپرژیلوس در شرایط آزمایشگاهی. مجله پزشکی ارومیه، 20، ٢٧١-٢٧٧.

قربانپور م، جاهدی ج، 1395. بررسی فعالیت ضد میکروبی عصاره اسپند، رزماری و برگ بو استخراج شده توسط اولتراسوند بر روی استافیلوکوکوس اورئوس و اشرشیا کلی، مجله بهداشت مواد غذایی، 6، 33-42.

قربان پور م، یوسفی م.، 1397. سینتیک خـشک‌کردن فیلم های زیست‌تخریب‌پذیر به روش مایکروویو. فناوری‌های نوین غذایی، 6، 1-8.

Alves VD, Castelló R, Ferreira AR, Costa N, Fonseca IM  and Coelhoso IM, 2011. Barrier properties of carrageenan/pectin biodegradable composite films. Procedia Food Science 31: 240-245.
Arora A and Padua GW, 2010. Review: nanocomposites in food packaging, Journal of Food science 75: 43-49.
Campos CA, Gerschenson LN and Flores SK, 2011. Development of edible films and coatings with antimicrobial activity, Food Bioprocess Technol 4: 849–875.
Chemat F, Abert Vian M and Cravotto G, 2012. Review Green Extraction of Natural Products: Concept and Principles. International Journal of Molecular Sciences 13: 8615-8627.
De Azeredo HMC, 2009. Nanocomposites for food packaging alications, Food Res Int 42: 1240–1253.
Ghorbanpour M, 2015. Stability modification of SPR silver nano-chips by alkaline condensation of aminopropyltriethoxysilane. Journal of Nanostructures 5(2): 105-110.
Ghorbanpour M, 2016. Amine Accessibility and Chemical Stability of Silver SPR Chips Silanised with APTES via Vapour Phase Deposition Method. Journal of Physical Science 27(1): 39-51.
Ghorbanpour M, Moghimi M and Lotfiman S, 2017. Silica-supported copper oxide nanoleaf with antimicrobial activity against Escherichia coli. Journal of Water and Environmental Nanotechnology, 2(2): 112-117.
Thakhiew W, Champahom M, Devahastin S and Soponronnarit S, 2015. Improvement of mechanical properties of chitosan-based films via physical treatment of film-forming solution. Journal of food engineering, 158, 66-72.
Kanmani P and Rhim J-W, 2014. Development and characterization of carrageenan/grapefruit seed extract composite films for active packaging, International Journal of Biological Macromolecules 68:258–266.
Luque de Castro MD and Garcia-Ayuso LE, 1998. Soxhlet extraction of solid materials: An outdated technique with a promising innovative future. Analytical Chemical Acta 369: 1-10.
Madadi M, Ghorbanpour M and Feizi A, 2018. Antibacterial and photocatalytic activity of anatase phase Ag-doped TiO2 nanoparticles. Micro & Nano Letters, 13(11), 1590-1593.
Martins JT, Cerqueira MA, Bourbon AI, Pinheiro AC, Souza BWS and Vicente AA, 2012. Synergistic effects between kaa-carrageenan and locust bean gum on physicochemical properties of edible films made thereof, Food Hydrocoll 29:280–289.
Nouri A, Yaraki MT, Ghorbanpour M, Agarwal S and Gupta VK, 2018. Enhanced Antibacterial effect of chitosan film using Montmorillonite/CuO nanocomposite. International journal of biological macromolecules. 115: 227-235.
Rhim J-WW, Park H-MM and Ha C-SS, 2013. Bio-nanocomposites for food packaging alications, Progress in Polymer Science 38: 1629–1652.
Nouri A, Yaraki MT, Ghorbanpour M and Wang, S, 2018. Biodegradable κ-carrageenan/nanoclay nanocomposite films containing Rosmarinus officinalis L. extract for improved strength and antibacterial performance. International journal of biological macromolecules. 115: 227-235.
Rhim J and Wang L, 2014. Alied Clay Science Preparation and characterization of carrageenan-based nanocomposite films reinforced with clay mineral and silver nanoparticles, Applied Clay Science 97–98:174–181.
Santoyo S, Llorı´ a R, Jaime L, Iban˜ ez E, Sen˜ ora´ ns FJ, and Reglero G, 2006. Supercritical fluid extraction of antioxidant and antimicrobial compounds from Laurusnobilis L. chemical and functional characterization. European Food Research and Technology 222: 565–571.
Shojaee-Aliabadi S, Hosseini H, Mohammadifar MA, Mohammadi A, Ghasemlou M, Ojagh SM, Hosseini SM and Khaksar R, 2013. Characterization of antioxidant-antimicrobial κ-carrageenan films containing Satureja hortensis essential oil. International journal of biological macromolecules 31;52:116-124.
Shojaee-Aliabadi S, Mohammadifar MA, Hosseini H, Mohammadi A, Ghasemlou M, Hosseini SM, Haghshenas M, Khaksar R, 2014. Characterization of nanobiocomposite kappa-carrageenan film with Zataria multiflora essential oil and nanoclay. International journal of biological macromolecules 31;69:282-9.
Rhim JW and Wang LF, 2014. Preparation and characterization of carrageenan-based nanocomposite films reinforced with clay mineral and silver nanoparticles. Applied Clay Science. 31;97:174-81.
Soradech S, Nunthanid J, Limmatvapirat S and Luangtana-anan M, 2012. An aroach for the enhancement of the mechanical properties and film coating efficiency of shellac by the formation of composite films based on shellac and gelatin, Journal of Food Engineering 108:94–102.
Tang C, Chen N, Zhang Q, Wang K, Fu Q and Zhang X, 2009. Preparation and properties of chitosan nanocomposites with nanofillers of different dimensions. Polymer Degradation and Stability 94 (1):124-131. Thakhiew W, Devahastin S and Soponronnarit S, 2010. Effects of drying methods and plasticizer concentration on some physical and mechanical properties of edible chitosan films, Journal of Food Engineering, 99: 216–224.
Vinatoru M, 2001. An overview of the ultrasonically assisted extraction of bioactive principlws from herbs. Ultrasonics Sonochemistry 8: 303-313.