بررسی پروفایل اسیدآمینه، حل‌ شوندگی وخواص آنتی اکسیدانی هیدرولیزات حاصله از پروتئین کینوا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 هیات علمی دانشگاه تبریز

2 فارغ التحصیل کارشناسی ارشد گروه علوم و صنایع غذایی، دانشکده کشاورزی، دانشگاه تبریز، تبریز، ایران.

3 گروه علوم و صنایع غذایی دانشگاه تبریز

4 استاد گروه فارماسیوتیکس مرکز تحقیقات کاربردی دارویی، دانشگاه علوم پزشکی تبریز

5 استادیار مرکز ملی تحقیقات شوری. سازمات تحقیقات آموزش و ترویج کشاورزی

چکیده

زمینه مطالعاتی: گیاه کینوا با دارا بودن درصد بالایی از پروتئین، مواد مغذی و اسیدآمینه‌های ضروری دارای خواص فیزیکو شیمایی، عملکردی و آنتی‌اکسیدانی مطلوب بوده و هیدرولیزات پروتئینی حاصل از آن می توانند به عنوان منابع غذایی زیست فعال در محصولات عملگرا استفاده شوند. هدف: هدف از پژوهش حاضر، بررسی خواص فیزیکوشیمیایی کینوا به عنوان یک منبع پروتئینی مهم به عنوان جایگزین گندم جهت غلبه بر مشکلات بیماران سلیاک است. روش کار: در این مطالعه به استخراج پروتئین‌ دانه کینوا، بررسی پروفایل اسیدآمینه و در ادامه بررسی خصوصیات طیف‌سنجی فروسرخ کنسانتره پروتئینی و پپتیدهای زیست فعال حاصل از هیدرولیز آن با آنزیم پانکراتین، حل‌شوندگی و خواص آنتی‌اکسیدانی پرداخته شده است. نتایج: نتایج در قالب طرح کاملا تصادفی در سطح معنی‌داری 5% میزان رطوبت را 36/9، خاکستر 29/2، فیبر خام 6/4، پروتئین 51/12، چربی 36/5 و کربوهیدرات 48/71 درصد نشان داد. بیشترین درصد اسیدآمینه کینوا را اسیدآمینه‌های گلوتامیک اسید و لیزین تشکیل داد ولی از نظر آمینواسیدهای گوگردی کمبود وجود داشت. بیشترین میزان درجه هیدرولیز معادل 17/19 درصد پس از گذشت 180 دقیقه بود. پپتیدهای کینوا در محدوده pH ایزوالکتریک دارای کمترین میزان حل‌شوندگی بودند . پپتید های زیست فعال کینوا موجب احیای رادیکال DPPH شدند و فعالیت آنتی‌اکسیدانی بالا داشتند (8/67 درصد پس از 6 ساعت هیدرولیز و پس از8 ساعت به 8/59 درصد کاهش یافت). نتیجه‌گیری نهایی: در کل می‌توان نتیجه‌گیری کرد گیاه کینوا با دارا بودن درصد بالایی از پروتئین دارای خواص فیزیکو شیمایی، عملکردی و آنتی‌اکسیدانی مطلوب بوده و پپتید های حاصل از آن می‌تواند به عنوان منابع غذایی زیست فعال در محصولات عملگرا استفاده شود.

کلیدواژه‌ها


عنوان مقاله [English]

Study of amino acid profile, solubility and antioxidant properties of quinoa protein hydrolysates

نویسندگان [English]

  • akram pezeshky 1
  • hesam daliri 2
  • maryam mohammadi 3
  • Hamed Hamishehkar 4
  • Hossein Beyrami 5
2 Ms graduated of Food Science and Technology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran.
3 university of tabriz
4 Associate Professor of pharmaceutics, Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
5 Assistant professor. National salinity research center.
چکیده [English]

Quinoa with scientific name "Chenopodium quinoa Willd", unlike real grains that belong to the family Poaceae, is a pseudocereal belonging to the Amaranthaceae family of dicotyledonous or dual-leaf vegetables, and Its origin is in South America. Quinoa seeds also contain a variety of bioactive components such as polyphenols, carotenoids, and oleic acid, all of them are beneficial to human health. Quinoa, with its essential amino acids, protein content, and high protein bioavailability, can be a good alternative for plant and animal proteins in patients with celiac disease. Seventeen bioactive peptides with potential properties were isolated and identified from quinoa proteins. In recent years, much research has been done on use of quinoa and its bioactive peptides for its functional properties. Nowak et al., (2016) in study of nutrients in quinoa expressed that; Quinoa is an ancient agricultural product and can play an important role in food safety around the world. Fischer et al., (2017). In present study, amino acid sequence is extracted and quinoa protein is hydrolyzed using pancreatin enzyme and its functional properties such as emulsifying, foaming, solubility, antioxidant activity, etc. are investigated, so it can be used as a bioactive compound with nutritional and functional properties in food systems.
MATERIAL AND METHODS
Quinoa seeds purchased from National Salinity Research Center dependent to Yazd Agricultural investigation organization (Yazd, Iran), Pancreatic enzyme (active at pH of 8.0 and temperature of 37 °C ) and DPPH free radical prepared from Sigma Aldrich (Steinheim, Germany).
Chemical analysis, preparation of sample for protein hydrolysis
Flour preparation from quinoa seeds and defatting by hot method and solvent extraction Whole seeds were washed for 4-5 times until there was no foam in the solution that was the sense of saponins, then seeds oven-dried at 45+1 ˚C until being dry, then whole seeds were ground into flour using Miller (Proctor Silex model EI60, UPC) with a sixty-mesh screen (Elsohaimy et al., 2015). Defatting from quinoa flour was performed with Soxhlet technique and by hot solvent of hexan (normal) at a raito of 1:4 seed flour to solvent in 9 hr. (Sánchez-Vioque et al., 1999).
Amino acids compositions
Protein samples hydrolyzed with HCI 6 N in time of 24 hours at 110 ˚C. The excitation wavelength was 330 nm and the emission spectra were recorded at 480 nm, The analysis was carried out with a gas flow rate of 1.3 ml/min at separation temperature of 35 °C.
Obtaining of quinoa protein concentrate
At first, defatted Quinoa flour was suspended in distilled water in ratio of 1:10. Then pH of solution was adjusted to 10.0 using NaOH at a concentration of 1 N and resulted solution was thoroughly stirred at room temperature for 60 min. During this time interval, pH was kept constant at set value to maximize proteins dissolution. The mixture was then mixed for 30 minutes at 9000 rpm at 4°C in a centrifugal refrigerator (K241R, Pro-Research, Centurion Scientific Ltd, UK), The solid phase was then separated and pH of the supernatant was reduced to 5 using 1 N hydrochloric acid to precipitate quinoa proteins. same centrifuge operation, with above conditions was repeated again. The centrifuge precipitate, which is protein concentrate, was lyophilized with freeze dryer (Christ, Germany). And were stored in freezer at -18 °C for subsequent experiments )Živanović et al., 2011).
Preparation of protein hydrolyzate from quinoa protein concentrate
To complete enzymatic hydrolysis process, first, protein isolate sample was dispersed and dissolved in 0.01 M phosphate buffer with pH = 7.4 for 30 minutes at a concentration of 5% (w/v). And constant stirring at ambient temperature allowed it to be completely hydrated. Then, initial solution of pancreatin enzyme was prepared in 0.01 M phosphate buffer, This solution was added to the protein isolated solution in ratio of enzyme to protein substrate equal to 2.5% (w/w). Reaction temperature for pancreatin enzyme was 40 °C and continuous stirring was performed at 200 rpm for 4 hours. After completion of enzymatic hydrolysis process, sample reaction medium was placed in a 95 °C water bath for 15 minutes to inactivate enzyme and stop reaction. After that solution was cooled to ambient temperature, centrifugation was performed for 15 minutes at 9000 rpm, then supernatant solution was separated and lyophilized at a temperature of -20 °C with an approximate pressure of 0.1 mB, and then stored at -20 °C until use .
resuults
The results were in a completely randomized design with three replications and a significance level of 5% with a moisture content of 9.36, ash 2.29, crude fiber 4.6, protein 12.51, fat 5.36 and carbohydrate 71.48%. Results of chemical properties, shows quinoa seeds as an excellent potential food source with functional properties and this is due to quinoa essential nutrients content (such as proteins, carbohydrate, lipid and fiber). Result of present study is in agreement with (James, 2009), which in case quinoa seeds had about 11.2% moisture, 13.2% protein, 9% crude fiber, 1.2% total ash, and about 48.2% carbohydrate, however, this amount of carbohydrate was relatively less compared to present study. previous studies have shown that average protein content in quinoa seeds varies between 12% to 23%. The highest percentage of quinoa amino acids were glutamic acid and lysine, but there was a shortage of sulfur amino acids. The highest degree of hydrolysis (19.17%) was obtained after 180 minutes. Quinoa peptides had the lowest solubility in the isoelectric pH range and their solubility was increased in pH values below and above the isoelectric range. Quinoa bioactive peptides significantly reduced DPPH radical reduction and had high antioxidant activity (67.8% after 6 hours of hydrolysis and decreased to 59.8% after 8 hours). Quinoa with high percentage of protein has favorable physicochemical, functional and antioxidant properties and the resulting peptides can be used as bioactive food sources in pragmatic products.

کلیدواژه‌ها [English]

  • quinoa
  • pancreatin
  • bioactive peptid
  • infera red spectroscopy
  • antioxidant activity
حسن فامیان ف و پزشکی نجف­آبادی ا، 1396. تولید نانوامولسیون حاوی لینولئیک اسیدکونژوگه (CLA) به روش تشکیل خود به خودی وغنی سازی شیر کم چرب پاستوریزه با آن. پژوهش‌های صنایع غذایی، 145-135 (4)27.
مرندی الف، محمدی م، فتح الهی ع، ، پزشکی نجف‌آبادی ا 1397. غنی‌سازی شیر کم‌چرب پاستوریزه با استفاده از نانولیپوزوم حاوی لینولئیک اسیدکونژوگه(CLA). پژوهش‌های صنایع غذایی، 165-157 (4)28
Abugoch LE, Romero N, Tapia, CA, Silva J and Rivera, M, 2008. Study of some physicochemical and functional properties of quinoa (Chenopodium quinoa Willd) protein isolates. Journal of Agricultural and Food chemistry 56(12): 4745-4750.
Alashi AM, Blanchard CL, Blanchard CL, Mailer RG, Agboola SO, Mawson J, et al., 2014. Antioxidant properties of Australian canola meal protein hydrolysates. Food Chemistry 146: 500-506.
Bamdad F, Wu J, Chen L, 2011. Effects of enzymatic hydrolysis on molecular structure and antioxidant activity of barley hordein. Journal of Cereal Science 54(1): 20-28.
Berti C, Ballabio C, Restani P, Porrini M, Bonomi F and Iametti S, 2004. Immunochemical and molecular properties of proteins inChenopodium quinoa. Cereal Chemistry 81(2): 275-277.
De Castro RJS and Sato HH 2015. Biologically active peptides: Processes for their generation, purification and identification and applications as natural additives in the food and pharmaceutical industries. Food Research International 74: 185-198.
Duran NM, Spelzini D, Wayllace N, Boeris V and da Silva, FLB, 2018. A combined experimental and molecular simulation study of factors influencing interaction of quinoa proteins–carrageenan. International journal of biological macromolecules 107: 949-956.
Elsohaimy SA, Refaay TM and Zaytoun MAM, 2015. Physicochemical and functional properties of quinoa protein isolate. Annals of Agricultural Sciences, 60(2): 297-305.
Escuredo O, Martín, M. I. G., Moncada, G. W., Fischer S and Hierro, JMH, 2014. Amino acid profile of the quinoa (Chenopodium quinoa Willd.) using near infrared spectroscopy and chemometric techniques. Journal of Cereal Science 60(1): 67-74.
Ferreira DS, Pallone JAL and Poppi RJ, 2015. Direct analysis of the main chemical constituents in Chenopodium quinoa grain using Fourier transform near-infrared spectroscopy. Food Control 48: 91-95.
Fischer S, Wilckens R, Jara J, Aranda M, Valdivia W, Bustamante L, Obal I, 2017. Protein and antioxidant composition of quinoa (Chenopodium quinoa Willd.) sprout from seeds submitted to water stress, salinity and light conditions. Industrial Crops and Products 107: 558-564.
Gallagher E, Gormley TR and Arendt EK, 2004. Recent advances in the formulation of gluten-free cereal-based products. Trends in Food Science & Technology 15(3-4): 143-152.
Gonzalez JA, Roldan A, Gallardo M, Escudero T and Prado FE, 1989. Quantitative determinations of chemical compounds with nutritional value from Inca crops: Chenopodium quinoa. Plant foods for human nutrition 39(4): 331-337.
Jamdar SN, Rajalakshmi V, Pednekar MD, Juan F, Yardi V and Sharma A, 2010. Influence of degree of hydrolysis on functional properties, antioxidant activity and ACE inhibitory activity of peanut protein hydrolysate. Food Chemistry 121(1): 178-184.
James LEA, 2009. Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional properties. Advances in food and nutrition research 58(1):1-31.
Kim SK, Kim YT, Byun HG, Nam KS, Joo DS and Shahidi F, 2001. Isolation and characterization of antioxidative peptides from gelatin hydrolysate of Alaska pollack skin. Journal of agricultural and food chemistry 49(4): 1984-1989.
Mäkinen OE, Zannini E, Koehler P and Arendt EK, 2016. Heat-denaturation and aggregation of quinoa (Chenopodium quinoa) globulins as affected by the pH value. Food Chemistry 196: 17-24.
Nishinari K, FangY, Guo S and Phillips GO, 2014. Soy proteins: A review on composition, aggregation and emulsification. Food Hydrocolloids 39: 301-318.
Nowak V, Du J and Charrondière UR, 2016. Assessment of the nutritional composition of quinoa (Chenopodium quinoa Willd.). Food Chemistr, 193: 47-54.
Ogungbenle HN, 2003. Nutritional evaluation and functional properties of quinoa (Chenopodium quinoa) flour. International Journal of Food Sciences and Nutrition 54(2): 153-158.
Ogungbenle HN, Oshodi AA and Oladimeji MO, 2009. The proximate and effect of salt applications on some functional properties of quinoa (Chenopodium quinoa) flour. Pakistan Journal Nutrition 8(1): 49-52.
Peng X, Kong B, Xia X and Liu Q, 2010. Reducing and radical-scavenging activities of whey protein hydrolysates prepared with alcalase. International Dairy Journal 20(5): 360-365.
Saito K, Jin DH, Ogawa T, Muramoto K, Hatakeyama E, Yasuhara T and Nokihara K, 2003. Antioxidative properties of tripeptide libraries prepared by the combinatorial chemistry. Journal of Agricultural and Food Chemistry, 51(12), 3668-3674.
Sienkiewicz-Szłapka E, Jarmołowska B, Krawczuk S, Kostyra E, Kostyra H and Iwan M, 2009. Contents of agonistic and antagonistic opioid peptides in different cheese varieties. International Dairy Journal 19(4): 258-263.
Silvestre MPC, Morais HA, Silva, VDM and Silva MR, 2013. Degree of hydrolysis and peptide profile of whey proteins using pancreatin. Nutrire (Impresso): Revista da Sociedade Brasileira de Alimentação e Nutrição: 278-290.
Stikic R, Glamoclija D, Demin M, Vucelic-Radovic B, Jovanovic Z, Milojkovic-Opsenica D and Milovanovic M, 2012. Agronomical and nutritional evaluation of quinoa seeds (Chenopodium quinoa Willd.) as an ingredient in bread formulations. Journal of cereal science 55(2): 132-138.
Turkut GM, Cakmak H, Kumcuoglu S and Tavman S, 2016. Effect of quinoa flour on gluten-free bread batter rheology and bread quality. Journal of Cereal Science 69: 174-181.
Vega‐Gálvez A, Miranda M, Vergara J, Urib E, Puente L and Martínez EA, 2010. Nutrition facts and functional potential of quinoa (Chenopodium quinoa willd.), an ancient Andean grain: A review. Journal of the Science of Food and Agriculture 90(15): 2541-2547.
Vilcacundo R, Miralles B, Carrillo W and Hernández-Ledesma B, 2018. In vitro chemopreventive properties of peptides released from quinoa (Chenopodium quinoa Willd.) protein under simulated gastrointestinal digestion. Food Research International 105: 403–411.
Villanueva A, Vioque J, Sánchez-Vioque R, Clemente A, Pedroche J, Bautista J and Millán F,1999. Peptide characteristics of sunflower protein hydrolysates. Journal of the American Oil Chemists' Society 76(12): 1455-1460.
Vioque J, Clemente A, Pedroche J, Yust MM and Millgn F, 2001. Obtencion y aplicacionesde hidrolizad osproteicos. Journal of GrasasAceites 52: 132–136.
Wu HC, Chen HM and Shiau CY, 2003. Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomber austriasicus). Food research international 36(9-10): 949-957.
Wu W, Yu PP, Zhang FY, Hx C, ZM J, 2014. Stability and cytotoxicity of angiotensin-Iconverting enzyme inhibitory peptides derived from bovine casein. Journal of Zhejiang University- Science B 15(2): 143-152.
Yin SW, Chen JC, Sun SD, Tang CH, Yang XQ, Wen QB and Qi, JR 2011. Physicochemical and structural characterisation of protein isolate, globulin and albumin from soapnut seeds (Sapindus mukorossi Gaertn.). Food chemistry, 128(2): 420-426.
Zhang F, Lin L and Xie J, 2016. A mini-review of chemical and biological properties of polysaccharides from Momordica charantia. International journal of Biological Macromolecules 92:246-253.
Zhao Q, Xiong H, Selomulya C, Chen DX, Zhong H, Wang S, Sun W and Zhou Q, 2012. Enzymatic hydrolysis of rice dreg protein: Effects of enzyme type on the functional properties and antioxidant activities of recovered proteins. Food Chemistry 134: 1360-1367.
Živanović I, Vaštag Z, Popović S, Popović L and Peričin D, 2011. Hydrolysis of Hull-Less pumpkin oil cake protein isolate by Pepsin. Internation Journal of Biology Life Science 5(3): 30-34.